The Riemann-Roch Theorem and Algebro-Geometric codes
Main Article Content
This paper presents a study of the construction of the codes introduced by Goppa and the fundamental aspects of the theory of fields of algebraic functions that such construction requires.
- Riemann-Roch Theorem
BC. ONDREJ VATER, Weil diferentials. Univerzita Karlova v Praze, págs 8-10, 2015.
C. CHEVALLEY, Introduction to the Theory of Algebraic Functions of One Variable. Mathematical Surveys and Monographs 006. American Mathematical Society, págs 2-4, 1951.
C.E SHANNON, A Mathematical Theory of Communication Reprinted with corrections from The Bell System Technical Journal,Vol. 27, pp. 379–423, 623–656, July, October, 1948.
D. DUMMIT, R. FOOTE, Abstract Algebra. Third edition, editorial John Wiley and Sons Inc, págs 196-198, 2003.
G. JERONIMO, J. SABIA, S. TESAURI, Algebra Lineal. Buenos Aires, págs 1-11, 23-33, 83-84, 95-102, agosto de 2008.
H. STICHTENOTH, Algebraic Functions Fields and Codes. Graduate Texts in Mathematics, 254. Second edition, Springer-Verlag, págs 1-62, 2008.
R. HILL, An First Course in Coding Theory. Clarendon Press. Oxford, págs 47-49, 1986.
S. CAÑEZ, Notes on quotient spaces. Págs 1-4, 2002.
S. ROMAN, Field Theory. Graduate Texts in Mathematics, 158. Second edition, Springer, New York, págs 41-66, 2006.
Downloads
Accepted 2022-08-21
Published 2022-09-25

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.