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Abstract 
In this article we consider the study of the  -differentiability and  -ifferentiability for 

convex functions, not only in the general context of topological vector spaces (     ), but also in 
the context of Banach spaces. We study a special class of Banach spaces named Stegall spaces, 
denoted by  , which is located between the Asplund  -spaces and Asplund  -spaces ( -
Asplund). We present a self-contained proof of the Stegall theorem, without appealing to the huge 
number of references required in some proofs available in the classical literature (1). This requires 
a thorough study of a very special type of multivalued functions between Banach spaces known as 
usco multi-functions. 
 
Keywords: Bornology, usco mapping, subdifferential, Asplund spaces, Stegall spaces. 
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1 Introducction  

       In this article, we take as reference the classic book Gâteaux Differentiability of 
Convex Functions and Topology: Weak Asplund Spaces (1), in which Marián J. Fabian 
talks about the Asplund spaces. First, we define the multivalued functions as follows: 
Let   and   be sets. A multivalued function from   to   is a relation which assigns to 
each     a subset of  , denoted  ( );  ( )    for some     is admitted. The 
graph of the multivalued functions   is the set      ( )  {(   )        
 ( )}. If for each    ,  ( ) has only one element, we say the function is single-
valued. A single-valued function from   to  , is a relation      ( ) which assigns 
to each     a unique    . The graph of such functions is      ( )  
{(   )         ( )}. 
 
 The objective of this article is the study of the properties of the usco functions. A 
usco function is a multivalued function       between Banach spaces which is upper 
semicontinuous and  ( ) is compact for each    . A usco function       is 
minimal if for each usco function       such that 
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 ( )   ( )                   

 
      One of the most important examples of the usco functions appears in the study of 
differentiability of the convex functions defined on an open convex subset   of a 
Banach space  . It is convenient to note that the subdifferential of a function     
  {  } in     is the multivalued function         defined as follows: 
 

     ( )                 ( )    ( )  〈      〉              . 
 
      It is also important to observe that in the completely regular topological spaces, 
singletons and closed sets can be separated by open sets. If   is a Banach space, the 
topological dual with the weak topology is a completely regular space. Let us remember 
that a subset   of a topological space   is residual if there exists a countable family 
(  )    of open dense subsets such that   ⋂     . 
 
      The Asplud  -spaces are Banach spaces in which every continuous convex 
function, defined on an open convex set  , is differentiable in the Gâteaux sense in a 
residual subset of  . We denote by    the set of Asplund  -spaces. The Asplund  -
spaces are Banach spaces in which every continuous convex function, is differentiable 
in the Fréchet sense in a residual subset of  . We denote by    the set of Asplund  -
spaces. A Banach space   is a Stegall space if for every Baire space  , every usco 
minimal function        (with the weak topology) is single-valued in a residual 
subset. We denote by   the set of Stegall spaces. 
 
2     -Differentiability 
 
      Let us start with the following definition: 
 
Definition 2.1  Let   be a vector space on a field  . A vector bornology in   is a subset 
  of parts of  , denoted by  ( ), satisfying the following axioms: 
 
       . The union of all sets of   is  : 

⋃ 
   

     

       .   is stable under inclusions. That is, if     and    , then    . 
       .   is stable under finite union. That is, if {        }   , then 

⋃ 
 

   
      

       .   is stable under the sum operation. That is, if {        }    then 

∑ 
 

   
      

       .   is stable under the scalar multiplication operation. That is, if     and 
   , then     . 
       .   is stable under the formation of balanced envelope. That is, if    , then 
   ( )   . Where    ( ) denote the balanced hull of a set   defined by 
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   ( )  ⋂  
| |  

    

 
      In the context of a topological vector space (   ), we have some natural 
bornologies. 
 
Examples 2.2 Let (   ) be an       , then the following collections of subsets of   are 
vector bornologies. 

1. The  -bornology    is the collection of all the  -bounded subsets of  . 
2. The  -bornology    is the collection of all compact subsets of  . 
3. The  -bornology    is the collection of all finite subsets of  . 

 
      From the definitions of these bornologies, it is easy to see that 
 

          
  
      For a proof of this result see (2). 
 
      In the sequel,   and   denote Banach spaces,   is an open subset of   and  (   ) 
denotes the space of linear transformation from   to   that are continuous. 
 
Definition 2.3 Let   be a bornology in  . We say that a function       is  -
differentiable in     if there exists a function    (   ) such that for every     
 

 ( )     
   

 (    )   ( )
                        

  
The linear and continuous function   is called  -derivative of   at the point     and 
is denoted by       ( ). 
 
 The following result provides a differentiability criterium with respect to a given 
bornology: 
 
Theorem 2.4  Let   and   be      ,   an open subset of  , and   be a bornology in  . 
A necessary condition for       to be  -differentiable in     is that for every 
    
 

   
    

 (    )   (    )    ( )
                        

  
    This result follows doing a suitable modification in the proof of proposition 1.23 in 
(3). 
 
      In the case of a convex continuous functions        , we have the following 
characterization of the  -differentiable in    : 
 
Theorem 2.5  Let   be an       ,   an open convex subset of  , and   be a bornology 
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in  . A necessary and sufficient condition for a convex and continuous function 
      be  -differentiable in     is that for every     
 

   
    

 (    )   (    )    ( )
                        

 
      Similar considerations as theorem 2.4. 
 
2.1  Single-Valued Maps Derivatives 
 
      Now, we will study the main notions of differentiation in a        linked to the 
bornologies mentioned before: the Frechet derivative linked to the bornology of the 
bounded subsets of a       , the derivative of Hadamard linked to the bornology of the 
compact subsets and the derivative of Gâteaux linked to the bornology of the sets finite. 
Our interest in this work is to develop this theory in the case of Banach spaces.  
 
Definition 2.1.1 Let   and   be Banach spaces,     be an open subset and       
be a function. 
 
We say that the function       is  -differentiable (differentiable in the sense of 
Gâteaux) at the point     if there exists    (   ) such that 
 

 ( )     
   

 (    )   ( )
                 

  
and this limit is uniform on the finite subsets of  . In this case, we say that   is the  -
derivative of    in   and    ( )( )  ⟨   ( )  ⟩   ( ). 
 
      We say that the function       is  -differentiable (differentiable in the sense of 
Hadamard) at the point     if there exists    (   ) such that 
 

 ( )     
   

 (    )   ( )
                 

 
and this limit is uniform on the compact subsets of  . In this case, we say that   is the 
 -derivative of   in   and    ( )( )  ⟨   ( )  ⟩   ( ). 
 
      We say that the function       is  -differentiable (differentiable in the sense of 
Fréchet) at the point     if there exists    (   ) such that 
 

 ( )     
   

 (    )   ( )
                 

 
and this limit is uniform on the bounded subsets of  . In this case, we say that   is the 
 -derivative of   in   and    ( )( )  ⟨   ( )  ⟩   ( ). 
 
      When differentiability holds for any    , we say that   is  -differentiable in   
(resp.  -differentiable) (resp.  -differentiable). 
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      It is straightforward to see that the condition for uniform convergence is expressed 
as follows: 
 
for all bounded set   of   and every     there is a  (   )    such that 
 
     ‖ (    )  ( )     ( )( )‖        | |                                              (1) (1) 
 
     It is clear that if   is  -differentiable in     with derivative  , then it is  -
differentiable in   with derivative  . 
 
      The following elementary theorem is fundamental to the study of differentiability of 
convex functions: 
 
Theorem 2.1.2  Let   be a normed space. A convex continuous function defined on an 
open convex set with values in   is necessarily locally Lipschitz. 
 
      For a proof of this theorem see the work by R. Phelps in (3). 
 
3    USCO Functions  
 
      In this section we will go deeper into the study of the class of usco functions. We 
start giving some basic definitions. 
 
Definition 3.1 (Multivalued function) Let   and   be topological spaces. A multivalued 
function of a set   in a set   is a correspondence    ( ), which assigns to each 
    a subset  ( ) of the set  . It is possible that the set  ( ) is the empty set. The 
effective domain of this function is the set of the     such that  ( )   . 
 
Definition 3.2 (Upper/Lower semicontinuous multivalued function) Let   and   be 
topological spaces. A multivalued function       is upper semicontinuous in     
if for every open set   in   such that    ( ) (open neighborhood of  ( )) there 
exists an open set   of   such that     (neighborhood of  ) and  ( )    for all 
   . In the case that   is upper semicontinuous for any    , we say that   is upper 
semicontinuous in  . 
 
      A multivalued function       is lower semicontinuous in     if for every open 
set   in   such that  ( )     , there exists an open set   of   such that     
(neighborhood of  ) and  ( )      for all    . In the case that   is lower 
semicontinuous for any    , we say that   is lower semicontinuous in  . 
 
      The first remark is that   is continuous in     if it is both upper semicontinuous 
and lower semicontinuous at the point  . 
 
Definition 3.3 (Graph of a multivalued function) Let   and   be topological spaces. 
The graph of a multivalued function       is the subset      ( ) of     of the 
pairs (   )      such that    ( ). 
 
 Definition 3.4 The limit values of a net (  )    in a topological space (   ) are the 
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elements of the set 
⋂ 
   

{      } 

 
where   is the partial order relation in  . 
 
      We note that   is a limit value of the indicated net if and only if there exists a subnet 
that converges to  . 
 
Theorem 3.5  Let   and   be topological spaces. A multivalued function       is 
upper semicontinuous if and only if for any closed set    , the set 
 

{     ( )     } 
is closed on  . 
 
Proof. Suppose that   is upper semicontinuous, we want to show that 

{     ( )     }                 . 
 

      Let   be a closed subset of   and     , then   is an open set in   and if  ( )  
   , then  ( )   . Since   is upper semicontinuous, there is a neighborhood open 
  of   such that  ( )    for all    . But this means that  ( )      for all     
and, therefore, 

({     ( )     })  
 

is open set and so {     ( )     } is closed on  . Suppose now that 
 

{     ( )     } 
 

is closed with   is closed, we want to establish that   is upper semicontinuous. Let 
    and   is an open subset of   such that  ( )   . Then,    is a closed set and 
by hypothesis 

{     ( )      } 
 

is closed in   and its complement   is an open set. Now,     since  ( )       
and  ( )       for all    , so that  ( )    for all    . 
 
      Observe that now we are able to introduce a relation of order on the set of 
multivalued functions  (   ) with   and   being topological spaces. For     in 
 (   ), se define the order   as 

         ( )   ( )                
 
Definition 3.6 (Usco Function) Let   and   be topological spaces. A multivalued 
function       is a usco function if   is upper semicontinuous such that  ( )    
and is compact for any    . We denote the set of usco functions from   to   by 
 (   ). 
 
      We say that    (   ) is a minimal usco function if   is a minimal element of the 
ordered set ( (   )  ). This means that, if    (   ) and    , then    . 
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      Now, we will establish some results about usco functions. 
 
Theorem 3.7  For every    (   ), there exists a minimal usco function    (   ) 
such that    . 
 
Proof. Let    (   ) and let   be the collection of usco functions   such that    . 
Let us show that every chain   contained in   is bounded below. If   is a finite subset 
in  , then ⋂      ( ) is a closed and nonempty subset contained in the compact set 
 ( ) and which we can order   linearly. Then ⋂      ( ) is a closed and nonempty set 
contained in the compact set  ( ) and is therefore compact. We apply theorem 3.5 to 
the chain {     } to conclude that the function 
 

   ( )  ⋂ 
   

 ( ) 

 
is upper semicontinuous and thus, a usco function that minorizes  . By Zorn’s lemma 
  has a minimal element. 
 
Lemma 3.8  Let (   ) and (   ) be topological spaces and       be a usco 
function. If (     )    is a net in      ( ) and     , then (  )    has at least one 
limit value in  ( ). 
 
Proof. By contradiction, we assuming that the net (  )    has not limit values in 
     ( ). That is, for all    ( ), there exists a    such that   {       }. Let    
be an open neighborhood of   such that    {       }   . Since  ( ) is compact, 
there exists a finite subset    ( ) such that  ( )  ⋃         . For the upper 
semicontinuity of  , there exists an open neighborhood     of   such that 
 

 ( )                   
 
      As     , there exists a     (where   is a directed set) such that      provided 
that    . We can suppose that        {      }. Consequently,  (  )    if 
   . By hypothesis, we have (     )       ( ), i.e.,      and       for some 
   , which implies that    {       }   , which is a contradiction. 
 
Theorem 3.9  (Characterization of usco functions) Let (   ) and (   ) be topological 
spaces. A multivalued function       is a usco function if and only if its graph 
     ( ) is a closed set. Moreover, there exists a usco function    (   ) such that  
   . 
 
Proof. Assume that   is a usco function. If prove that (   )       ( ), then we will 
show that (   )       ( ), i.e.,    ( ). There is a net (     )    such that     , 
     and     (  ). By lemma 3.8, (  )    has at least one adhesion value in  ( ). 
That is, there is a subnet (   )    such that         ( ) and by the uniqueness of 
the limits,       ( ). It is clear that      . 
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      In the other direction, if      ( ) is closed and there is a usco function   such that 
   , then   is a usco function. By theorem 3.5, it suffices to show that  ( ) is closed 
for all    . Let    ( ) and we will show that    ( ). Then there is a net (  )    
in  ( ) such that     . Let      for all    . Then (     )    is a net in 
     ( ) that fulfills the conditions of lemma 3.8 and, therefore, a subnet (  )    
converge to     ( ) and as     , it follows that       ( ). 
 
     The following lemma will be helpful for the main result in this section. 
 
Lemma 3.10  Let (   ) be the topological space, (   ) Hausdorff space and       
a usco function. The following are equivalent: 
 

(i).   is a minimal usco function. 
(ii).  If   is an open subset of  ,   is an open subset of   and  ( )      for 

some    , then there exists an open nonempty subset     such that 
 ( )    for all    . 

(iii). If   is an open subset of   and   is a closed subset of   such that  ( )    
  for all    , then  ( )    for all    . 

 
Proof. We will show that ( )  (  ). Let     and     open subsets as in (ii). We 
need to establish that exists an      such that  (  )    because the fact that   is 
upper semicontinuous implies that there is an open neighborhood   in   of    such that 
 

 ( )                   
 
      We argue by contradiction, let us assume that this statement is false and let       
closed in  . Then,  ( )      for any    . We define the function       by 
 

 ( )  {  ( )                    ( )              
 
      It is clear that  ( )   , closed for all     and    . Then, we conclude that 
   (   ) by theorem 3.9. Since   is a minimal usco function by hypothesis, then 
    and consequently,  ( )   ( )    for all    . This is a contradiction, since 
by hypothesis  ( )      for some    . 
 
      Now we show that (  )  ( ). By hypothesis       is a usco function. From 
theorem 3.7, there exists a minimal usco function     and    , as we will show 
below. If   and   are not equal, there exists      such that  (  )   (  ). As 
 (  )   (  ) there exists    (  ) such that    (  ). Thus, there exists an open   
in   such that     and  (  )      since  (  ) is compact. From this, it follows 
that  (  )  ( )

 
. Let    ( )    be an open neighborhood of  (  ). By the 

upper semicontinuity of  , there exists an open neighborhood     of    such that 
 

 ( )                   
 



Usco Functions 

Volumen 22 No. 1, enero-junio 2018 53

      This construction allows us to see that      and  (  )     . Then, there is a 
subset open nonempty     such that 
 

 ( )                 , 
 

which is a contradiction, since  ( )   ( )   ,  ( )    and       if    . 
 
      Now we see that (  )  (   ). Let   be a subset open in   and   be a subset closed 
in   as in (iii). Suppose there exists     such that  ( ) is not contained in  . Then, 
 ( )      for some    , where       is an open subset in  . For (ii) there 
exists a nonempty open subset     such that  ( )    for all    , i.e.,  ( )  
   , which is a contradiction, since by hypothesis  ( )      for all    . 
 
      We will show that (   )  (  ). Let     and    , with  (  )      such 
that     . Let us prove that there exists     such that  ( )   . Otherwise, we 
would have  ( )       for all    , where       is a closed subset in  . Then, 
for (iii) we have  ( )     for all     and hence  ( )     , which is a 
contradiction. Therefore,   is an open neighborhood in   of  (  ) and by the upper 
semicontinuity of  , there exists an open neighborhood     of    contained in   such 
that  ( )   . In other words,  ( )    for all    . 
 
      We also have the following theorem of minimal usco functions: 
 
Theorem 3.11  (Characterization of minimal usco functions) Let (   ) and (   ) be 
topological spaces and       be a usco function. Then the following statements are 
equivalent: 
 

1)   is a minimal usco function. 
2) For every topological space (   ) and any continuous single-valued function 

     ,     is a minimal usco function of   in  . 
 
Proof. We will show  )   ). 

(i) (   )( ) is compact and nonempty for all    . Indeed, as   is a usco 
function, then  ( ) is compact for all    . Then  ( ( )) is compact since   
is continuous. 
 

(ii)      is upper semicontinuous. In fact, let      and   be an open 
neighborhood in   such that  ( (  ))   . By continuity, we have    
   ( ) is open in   such that  (  )   . Since   is upper semicontinuous, 
there is a neighborhood open   in   of    such that  ( )    for all     
and, therefore,  ( ( ))    for any    . So, we have shown that (   )  
 (   ). 

      It remains to show that     is a minimal usco function. Using equivalences 
established in lemma 3.10, we must verify that     satisfies (ii). Let   be an open 
subset in   and   subset open in   such that ((   )( ))      for some    .          
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For continuity of  , we have    ( ) is an open subset in   such that  ( )     ( ) 
(this is because ((   )( ))      if and only if  ( )     ( )   ). Since   is 
upper semicontinuous, there is an open neighborhood     of   such that 
 

 ( )     ( )               
 
and, therefore,  ( ( ))    for any    . 
 
      We will show  )   ). Let     and        be the identity function   ( )   .  
 
      We observe that       , which by hypothesis is a minimal usco function. 
 
Definition 3.12 (Residual space) Let (   ) be a topological space. We said that     
is a residual set, if there is a family of open sets (  )    which are dense in   such 
that ⋂         . 
 
Recall that a subset   of   is dense if its closure   is equal to  . 
 
Definition 3.13 (Baire space) A Baire space is a topological space (   ) with the 
property that any residual is dense in  . 
 
      Regarding Baire space, we have the following well known examples (see (4)): 
 

1. Any locally compact topological space is a Baire space. 
2. Any open subset of a Baire space is a Baire space. 
3. Any complete metric space is a Baire space. 

 
Theorem 3.14  Let (   ) be a Baire space and (   ) be a complete metric space. Then 
any minimal usco function       is single-valued in some residual subset   of  .  
 
Proof. Let       be a minimal usco function, we will see that, for every    , there 
exists an open set   such that diameter of  ( ) is less than   (    ( ( ))   ). In 
fact, let    ( ) and  (    ). There is at least one     such that  ( )   (    )  

 , otherwise  ( )  ( (    ))
 
 for all    . By the lemma 3.10.(ii), there exists an 

open nonempty subset   of   such that  ( )   (    ) for all     and consequently 
 

    ( ( ))       
 

      Let    ⋃   {                      ( ( ))   }. It is clear that this set is 
open. We will show that    is dense. Let     and   be an open neighborhood of  . If 
   ( ) and  (    ) then  ( )   (    )    and again by lemma 3.10.(ii), there is 

an open nonempty subset   of   such that  ( )   (    ) for all    , i.e., 
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    ( ( ))   
   

 
and, therefore,     . We have shown that       . If      , we will write    
instead of   

 
. Then {      } is a countable collection of open subsets which are 

dense in  . Since this is a Baire space, then    ⋂        is a subset residual dense. If 
   , then 

    ( ( ))   
                 

 
and, therefore,  ( ) consists of only one element. That is,  |  is a single-valued 
function. 
 
3.1  Usco Functions and Continuity of Subdifferential of a Convex Function 
 
Definition 3.1.1 (Dual space) Let   be a Banach space. The topological dual of   is 
defined as the Banach space     (   ). Hereafter we set the notation 
 

  ( )  ⟨    ⟩                    
 
      If   is a Banach space, the weak-   topology of the dual    denoted by  (    ) is 
generated by the family {      } of seminorms, where   (  )  |⟨    ⟩|.  
 
      We note that (    (    )) is a completely regular topological space. A 
fundamental weak neighborhood of     is any set of the form 
 

     ( )  ⋂  
     

{    |⟨      ⟩|   }  

 
where    is a finite subset of    and    . 
 
Definition 3.1.2 (The subdifferential) Let   be a convex open subset of a Banach space 
  and let       {  } be a convex and continuous function, and let       . 
The subdifferential of   in the point    , is the set of      such that 
 

 ( )   ( )       (   )   ( )   ( )                
 
      We denote by   ( ) the subdifferential of   at point  . Any function         
such that      ( ) for all     is called subgradient of   at  . A function   is 
called subdifferentiable in    , if there is at least one subgradient in  . A function   
is called subdifferentiable, if it is subdifferentiable at each       . 
 
Definition 3.1.3 Let   be a Banach space and   be a convex open subset of  . A 
function       called is radially differentiable at     in the direction   if there 
exists the limit 
 
                                (    )  ( )

                                                              (2) 
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The value of this limit is called the radial derivative of   at point   in the direction  . 
We denote 
                                 (   )     

    
 (    )  ( )

                                                     (3) 
 
the radial derivative of   at point   in the direction  . The function    (   ) is well 
defined, it is sublineal, convex and continuous. If    (   ) exists for all    , then we 
say that   is radially differentiable at    . 
  
      We know that every convex real valued function defined in an open is radially 
differentiable if 
 
          (   )     

    
 (    )  ( )

               (   )     
    

 (    )  ( )
           (4) (4) 

 
 then 

   (   )         (   )                             
 
      The radial derivative    (   ) it allows us to locate the subgradient at the point 
    in the following sense: 
 
Lemma 3.1.4  Let   be a Banach space,   be a convex open subset of  ,       be a 
convex and continuous function. Then     ( ) if and only if 

   (   )       ( )         (   )                             
 
Proof. If     ( ), then       is linear and continuous. Also if        for   
small enough and 
 

 (  )    ( )   (    )   ( )       (    )   ( )  
 

      Dividing by     and taking     , we have  ( )     (   ). On the other 
hand, 
 

 (    )   ( )
   (  (  )(  ))   ( )

  (  ) 
and, therefore, when   tends to zero by the left, we obtain that 
 

   (   )      (    )  
       
      Consequently, 

 (  )    ( )         (    )      (   ) 
 

and, therefore,    (   )   ( )  
 
Remark 3.1.5  For a Banach space  , we consider in    the weak-   topology  (    ). 
If       is a convex and continuous function, we will show that         is a usco 
function, considering in   the norm topology and in    the weak-   topology. 
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Lemma 3.1.6 Let   be a normed space, let   be an open and convex subset and 
      be a convex and continuous function. Then, 
 

1. The subdifferential function is a locally bounded function multivalued. In other 
words, for all    , exists     and     such that 

 
 (   )          ‖  ‖                   ( )              (   )  

 
2. If (  )    is a sequence in   that converges to     and (  )    is a 

sequence in    such that      (  ) for all    , then (  )    is bounded 
and the set of the  (    )-adherence values is nonempty and is contained in 
  ( ). 

 
      For a proof of this lemma see the work by R Phelps (3). 
 
Theorem 3.1.7  Let   be a normed space, let   be an open and convex subset. If 
      is a convex and continuous function, then     ( ) of   in    is a usco 
function, considering in   the norm topology and in    the weak-   topology  (    ). 
Proof.  We must show that: 
 

i.   ( ) is  (    )-compact and   ( )    for all    . 
ii.    is upper semicontinuous. 

 
      Let us show (i). Since   is continuous at     and convex, then    ( )      is 
a convex set such that    (   ( ))   . In particular if (   ( ))     (   ( )), then 
under the Hahn-Banach theorem, it exists      which separates (but not strictly) the 
point (   ( )) of the convex set. We can observe that      is the subgradient of   at 
  and, therefore,   ( )    for all    . Now, since   ( )     is bounded, by the 
Banach-Alaoglu theorem, this set is  (    )-relatively compact. Now, to conclude the 
proof we need to prove that  (    )-closed. In addition,   ( ) is  (    )-compact. 
We recall that,     ( ) if and only if  ( )     (   ) for     (by lemma 3.1.4) 
and 

  ( )  ⋂ 
   

{      ( )     (   )} 

 
 is  (    )-closed since for each    , the function    ( ) is  (    )-continuous. 
Let us show (ii). We will argue by contradiction, assuming that     ( ) is not upper 
semicontinuous in a    . This means that there exists a  (    )-neighborhood open 
  of   ( ), a sequence (  )    in   and a sequence (  )    in    such that    
  (  ) and      for all    . By the lemma 3.1.6.2, the sequence (  )    has at 
least one  (    )-adherence value     ( ). As   is a  (    )-neighborhood of  , 
then     , which is a contradiction. 
 
Theorem 3.1.8  Let   be a Banach space,   an open and convex subset and       
is a convex and continuous function. If   is  -differentiable in    , then the 
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subdifferential function     ( ) of   in    is upper semicontinuous at     with 
respect to the norm topologies. 
 
      For a proof of this theorem see (3). 
 
Lemma 3.1.9  Let   be a normed space,   an open and convex subset and       a 
continuous convex function. A sufficient condition for that   to be  -differentiable in 
    is that there is a continuous selection in   with respect to the norm topologies.  
 
      For a proof of this lemma see (3). 
 
4  The Asplund Spaces 
 
      We recall that a subset   of a topological space (   ) is a set    if it can be 
expressed as a countable intersection of open and dense subsets. In complete metric 
spaces and so, in Banach spaces, any residual subset is dense by the Baire’s theorem. 
 
Definition 4.1 (Asplund  -space/ -space/  -space) An Asplund  -space is a Banach 
space with the following property: If   is a continuous convex function defined in open 
and convex subset    , then  -differentiable in a dense subset    of  . 
 
      A  -Asplund is a Banach space with the following property: If   is a continuous 
convex function defined in open and convex subset    , then  -differentiable in a 
dense subset    of  . 
 
      An Asplund   -space is a Banach space with the following property: If   is a 
continuous convex function defined in open subset    , then  -differentiable in a 
dense subset    of  . 
 
      We note that a   -Asplund space is also an Asplund   -space.  We want to point 
out that in the usual literature,  the Asplund  -spaces are called the Asplund spaces,  the 
 -Asplund are called weak Asplund spaces and Asplund   -spaces are called weak 
differenciable spaces.  We could talk about the  -Asplund spaces, but it does not make 
much sense  because  it has  been  shown  that  continuous  convex function  wich are 
 -differentiables  are   -differentiables.  In  the original  article  by E.  Asplund (5),  a  
 -Asplund is a weak differentiability spaces (   ) and a Asplund  -space is called 
strong differentiability spaces (   ). The definition we use comes from R. Phelps (6). 
 
      We will denote by    the class of the  -Asplund and    the class of Asplund  -
spaces. 
 
4.1   Asplund  -Spaces and Dentables Subset of a Banach Space 
 
      In this section we present the proof of the Namioka-Phelps theorem, which 
characterizes Asplund  -spaces by means of the geometric condition of dentability. 
First, we discuss the notion of the dentable set. To do that, if   is a subset of a Banach 
space  , we define the support function of this set   as follows: 
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     (  )     
   

⟨    ⟩ 
 

of    in   { }. If we replace   by       (    )    ( ), then   is convex, closed 
and bounded in the norm topology and      . This function is sublineal and lower 
semicontinuous considering in    the weak-   topology denoted by  (    ) because it is 
the upper lower bound of lower semicontinuous functions. 
 
      Suppose now that   is a Banach space and    is a subset of   . Proceeding as 
before, we define the support function of the set    as follows: 
 

     ( )     
     

⟨    ⟩ 
 

of   in   { }. If        (    )    (  ), then    is convex,  (    )-closed 
(topology in  ) and bounded in the norm topology and        . 
 
Definition 4.1.1 ( -slice) Let   be a Banach space,     and    . For a nonempty 
bounded subset   of  , we define the (    )-slice of   as the set 
 

 (      )  {    ⟨    ⟩    (  )   }  
 
      Is clear that every slice is a relatively open set of   with the topology  (    ), i.e., 
 (    )|  (restriction of  (    ) to  ). 
 
Definition 4.1.2 (  -slice) Let   be a Banach space,     and    . For a nonempty 
bounded subset    of   , we define the weak  - (   )-slice of    as the set 
 

  (      )  {      ⟨    ⟩     ( )   }  
 
      We note that   (      ) is open in the topology  (    )|  . On the other hand, if 
   , then 

  (      )    (      )  
 
      Moreover, if        (    )    (  ), then   (      )    (      ) since 
       .  
 
Definition 4.1.3 (Dentable set) Let   be a Banach space. A subset     is called 
dentable if it admits slices of arbitrarily small diameter. We say that a subset       is 
weak  -dentable if it admits weak  -(   )- slice of arbitrarily small diameter. A Banach 
space is dentable if any bounded subset is dentable. 
 
Theorem 4.1.4  (Namioka - Phelps). A Banach space   is an Asplund  -space if and 
only if its dual    is weak  - dentable. 
 
 Proof. Suppose   is an Asplund  -space and show that all bounded subset of    admits 
slices of arbitrarily small diameter, otherwise, out so there would be a bounded subset 
   of    in which all (   )-slice has a diameter    . 
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      Let        (    )    (  ). This set is convex,  (    )-closed and bounded. By 
the Banach-Alaoglu theorem,    is  (    )-compact. Since      , all (   )-slice of 
   has a diameter   , we will show that the continuous sublinear function 
 

    ( )     ( )     
     

⟨    ⟩ 
 
of   in   is not  -differentiable in any point, which contradicts that   is an Asplund  -
space. With this purpose in mind, let    

  and     arbitrary. We will choose   and   
appropriately. For now, we assume that       ,     and    . If    , then 
      (      )   , so that there are         (      ) such that ‖     ‖   
   , 

⟨    ⟩       ( )              ⟨    ⟩       ( )     
 
      There exists a     such that ‖ ‖    and ⟨       ⟩      . Now, if    , 
then 
 
 (    )   (    )    ( )      ⟨       ⟩  ⟨       ⟩  ⟨       ⟩     

                                                     ⟨       ⟩          (    )      
 
      We can now choose   and   appropriately. Let    

  and     
 . So  

 
                 (    )  (    )   ( )

      (    )    
   

    
                                          (5) 

 
      Since inequality (5) holds for all    , in particular if    

 , so we have shown that 
if    

  and   is arbitrary, then there is always a   and a   such that 
 

      ‖ ‖               
(    )   (    )    ( )

          
 
      In virtue of theorem 2.4 with the bornology   , we conclude that   is not  -
differentiable in  , which is a contradiction. 
 
      Now, we will show that   is an Asplund  -space. Let   be an open subset of   and 
      a convex function. Theorem 2.5 makes possible to locate the points of 
differentiability of  . The bornology that we are going to consider is   , of all bounded 
subsets   since here the  -derivative is defined. Let  (   ) be the set of     for 
which there is a  (   )    such that 
 
 (    )   (    )    ( )

                                      ‖ ‖        
      Then: 
 

(i).  (   ) is open for all    . 
(ii).  ⋂      (   ) is the set of  -differentiability of function  . 
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      The proof of (ii) is obvious. We will proof (i), i.e.,  (   ) is open. Since   is locally 
Lipschitzian by theorem 2.1.2, there exists a     and a constant     such that 
 (   )    and 

     (   )               | ( )   ( )|       ‖   ‖   
 
      By the definition of  (   ), there exists     such that    

  and 
 

 (    )   (    )    ( )
                       ‖ ‖                     

 
      Let    (    ). Then            (   ) since 
 

‖      ‖          ‖ ‖                           
 
      Now let us observe that if    , then 
 
 (    )   (    )    ( )

   

    
(    )   (    )    ( )

  
| (    )   (    )|

  
 

                            | (    )  (    )|
   | ( )  ( )|

  

                                  
 (‖   ‖ )  

 
      Let      {(    )(   )   }. Consequently, 
 

 (    )   (    )    ( )
            ‖   ‖    
‖ ‖                 

 
      Once the points of  -differentiability of   are located, it remains to show that 
     (   ) is dense for every    . On the one hand, we have that   is a Baire 
space. If      , we will write     (    ) instead of   

 
. Then {      } is a 

countable collection of open subsets in  . Since   is a Baire space, if we define 
 

   ⋂  
   

   

 (set of differentiability of  ) is a set   .  
 
      We will show that  (   ) is dense for every    . That is, if      (fixed but 
arbitrary) any open neighborhood   of    intersects  (   ). As the subdifferential 
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function is locally bounded, we can suppose that   ( )     is a bounded subset of   . 
As    is weak  -dentable, there exists a weak-   (   )-slice of    of arbitrarily small 
diameter, let say   . If     (      ), then      ( ) for some   in  , since 
 

 (      )  {      ⟨    ⟩     
     

⟨    ⟩   }  
 
      Since   is open, there exists     (sufficiently small) such that          . 
If      ( ), therefore, 
 

⟨      ⟩       ( )   ( )           ⟨      ⟩       ( )   ( )  
 
consequently, 
                                              ⟨      ⟩  ⟨      ⟩                                               (6) 
 
      As         and        by replacing in (6) 
 

      ⟨      ⟩  ⟨     ⟩   (⟨    ⟩  ⟨    ⟩) 
 
and how     

⟨    ⟩  ⟨    ⟩     
     

⟨    ⟩     
 
      We have, thus, shown that   ( )    (      ). Now, the set  (      ) is 
 (    )-open in    and as the subdifferential function is (‖ ‖   (    ))-continuous, 
there exists a     such that 

                         ‖   ‖                    ( )   (      )                                  (7) 

       Suppose that ‖ ‖   . Then   (    ),   (    )    (      ) if       
since 
‖(    )   ‖  ‖  ‖                    ‖(    )   ‖  ‖  ‖           

 
 
      If     ( ),     (    ),     (    ) and      , then 
 

  (    )   ( )   (    )       (    )   ( ) 
 ( )   (    )   (   )             (    )   ( ) 
        ( )   (  )   (    )       ( )   (    )  

 
      Now, as       and by the linearity of       we have 
 

 ( )         
(    )   ( )

         ( ) 
    ( )         (    )  ( )

          ( )  
 
      By (7) we know that       (      ) and that the diameter of this set is   , 
then we obtain 
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(    )   (    )    ( )

      ( )   ( )      ‖ ( )   ( )‖         
 
      This last inequality is true for every     such that ‖ ‖    and every      . 
Therefore,    (   ), i.e.,    (   )   . This means that  (   ) is dense and in 
consequence 

   ⋂  
   

   

(set of differentiability of  ) is a   -dense set. We have, thus, proved that   is an 
Asplund  -space. 
 
5  The Class of Stegall   on Topological Spaces 
 
      This section is the central part of the article, since it introduces an intermediate class 
between the Asplund  -spaces and  -Asplund, called the class of Stegall  ̂. This class 
establishes sufficient conditions for a Banach space to be a  -Asplund. 
 
      Let us recall that a topological space (   ) is completely regular, if it is Hausdorff 
and for each closed set   and every point   that does not belong to  , there is a 
continuous function     [   ] such that  |    and  ( )   . The Urysohn’s 
lemma, every metric space is completely regular.  
 
Theorem 5.1  If   is a separable Banach space and      is bounded, then the 
topology  (    )|  is metrizable (the topology of the dual is metrizable on the bounded 
sets). 
  
Theorem 5.2 Let   be a Banach space. Then (    (    )) is a space completely 
regular. 
 
      For the proof of previuos theorems see (1). 
 
Definition 5.3 ( -space) An  -space is a completely regular topological space   that 
satisfies the following condition: 
 
If   is a Baire space and       is a minimal usco function, then   is single-valued in 
a residual subset of  . We will denote by  , the set of all the  -spaces. 
  
      Even though Marian J. Fabian in (1) proves the following theorems, some important 
details were left out. We present here complete proofs. 
 
Theorem 5.4 Every metric space (   ) is an  -space. 
 
Proof. Let (   ) be a metric space,   be a Baire space and       is a minimal usco 
function. For each    , we define the open set 
 
                       ⋃  {                      ( ( ))   

 }                                 (8) 
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      We will show that   ⋂        is residual. Note that each one    is open and we 
will prove that each    is dense for all    . Let      and      be an open 
neighborhood of   with 

    ( (  ))      
 
   

 
      If    ( ) and  (     ), then  ( )   (     )    and by lemma 3.10.(ii), there 

is a nonempty open subset   of    such that  (  )   (     ) for each     . So 
 

    ( ( ))           
 
      Then,      and, therefore,        , which proof the density of the   . So 
{      } is a countable collection of open and dense subsets in   and, therefore, the 
intersection   of the    is a residual subset. Finally, by vertue of theorem 3.14, the 
usco function   is single-valued in   and, consequently,    . 
 
Theorem 5.5  Let   be a completely regular space. If (  )    is a sequence of closed 
subsets of  , with      for every     and   ⋃       , then    . 
 
Proof. Let   be a Baire space and       a minimal usco function. For each    , 
we define the set 
 

    {     ( )      }  
 
      Since   is a upper semicontinuous function and by hypothesis each    is closed in 
 , then each    is a closed set in   by theorem 3.5. If       (  ), then   ⋃        
is open and dense in  , since   is a space of Baire and   ⋃        (see (7), p.63). It is 
clear that 
 

                       
 
      Let     be such that     , and let     |  . We will show that    is a 
minimal usco function and   (  )    . 
 

1) In general, if       is a usco function and       (with   a regular 
space) is a continuous single-valued function, by theorem 3.11.2, we have that 
    is a usco function. From this it follows that if   is a subspace of  , then 
 |  is a usco function since  |       and    is continuous. 

 
2) We will show that    is minimal. For this we will use lemma 3.10 several 

times. Let      open and     closed such that 
  ( )                         

Then 
 ( )                        
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 and as   is minimal, by lemma 3.10.(iii) then  ( )    for every    . So 

  ( )                      
 

and, hence,    is minimal (using lemma 3.10 again). 
 

3)   (  )    . By the definition   , we have   ( )      for every      
and by lemma 3.10.(iii), we obtain that   (  )     since    is closed by 
hypothesis. 

      Let 
   {     ( )                           } 

and         . 
 
      We note that    is the set of      such that   ( ) consists of a single element. By 
hipothesis     , so    is a Baire space because it is an open subset of a Baire space 
and          is a minimal usco function. Then we conclude that    is a residual set 
in    for each    . Now we can show that   is residual in  . We have shown that 
there exists a countable collection {  }    of open sets of   such that      is 
residual in    and   ⋃        is dense in  . This implies that   is residual as we 
shall proof continuation. We define 

                   (⋃ 
   

   
  )            

 
      Then {  }    is an open and disjoint collection of open sets and       for each 
   . Let us show that   ⋃        is dense in  . Let     and   be a open 
neighborhood of   contained in  . As      , then        for some    . Let 
  be the first ordinal such that       . Then        and, therefore,     
  ⋃          which shows that   is dense at  . 
 
Since      is residual in   , there exist a countable collection {       } of open 
and dense subsets of    such that      ⋂        . Now, since      , then 
 
                           (    )  ⋂     (      )                                          (9) 
 
     The set        is open and dense in   . In fact, let      and   be a open 
neighborhood of   contained in   . Then   is an open neighborhood of   contained in 
  . Since     is dense in   , then         and, therefore,   (      )   . 
Since    is a Baire space, then 
 

   (⋂ 
   

   )  ⋂ 
   

(      )     

 
      This is the final part of the proof. Let    ⋃     (      ). Then we will see that 
   is open and dense in  . To prove this statement, let   be an open and nonempty 
subset of  . Since   is dense in  , then       and, therefore,        for 
some     (since   is defined as the union of   ). As        is open and dense in 
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  , it follows that 
(    )  (      )    (      )     

 
      We have, thus, shown that        for any open and nonempty of  , i.e.,    is 
open and dense in  . As   is a Baire space, then    ⋂        is dense in  . Now we 
remark that 

  ⋂ 
   

   ⋂ 
   

(⋃  
   

(      ))  

 
      As 

      ⋃  
   

(   (      ))         

 
since         if    , then 
 

⋂ 
   

   ⋂ 
   

(⋃ 
   

(      ))  ⋂ 
   

(    (⋃ 
   

  ))

 ⋃ 
   

(⋂ 
   

(      ))  

 
      Using (9), we obtain that 
 

⋂ 
   

   ⋃  
   

(    )     

 
      In other words, we have shown that   is residual, since each    is open and dense, 
accordingly   ⋃         . 
 
5.1  The Class of Stegall  ̂ of Banach Spaces 
 
      The class  ̂ of Stegall spaces consists of all of the Banach spaces whose dual with 
the weak-   topology are topological  -spaces. In other words,    ̂, if   is a Banach 
space and for all Baire space  , we have that any minimal usco function   of   in    
(with weak-   topologie) is single-valued in a residual subset. 
 
       Next, we give a detailed proof of the Stegall’s  theorem whose proof can be found 
in (1) citing numerous articles. We show that the usco multivalued functions, particulary 
the subdifferentials of convex functions, play an important role in this proof. 
 
Theorem 5.1.1 The Stegall class lies between the Asplund  -spaces and the  -Asplund. 
In other words, 

        ̂           
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Proof. Let us first show that     ̂. Let   be a Banach space and    be its dual. Recall 
that a bounded subset   of    is weak  -dentable, if it admits weak-  (   )-slice of 
arbitrarily small diameter. The weak-  (   )-slice of   is the set 
 

 (     )  {     ⟨    ⟩     ⟨   ⟩   } 
 
      A weak-  (   )-slice of   is a set  (    )|  open due to the continuity of the 
function    ⟨    ⟩ (i.e., the continuity of the support function). 
 
      Suppose   is an Asplund  -space and let       {      ‖  ‖    }. Let   
be a Baire space and     (   ), where    (    )|  (restriction of  (    ) to  ) 
and let   be a minimal usco function. We will show that   is single-valued in a residual 
subset. This would show that   is an  -space and since   is  (    )-closed and 
 

   ⋃  
   

    

 
(since    is fitted with the topology    (    )|    and      ( )) we conclude that 
   is an  -space by theorem 5.5, that is,    ̂. 
 
      Our aim now is to show that   is single-valued in a residual subset. For this, let us 
consider the set defined in (8). 
 
We claim that    is an open set in (   ), where    (    )| . In fact, if    , then 
  is an open neighborhood of  . 
 
      Now, we claim that    is dense in  . To prove this statement, let   be an open and 
nonempty subset of  . Recall that   is an Asplund space, so from theorem 4.1.4 
Theorem’s Namioka Phelps,    is weak-  -dentable. Now, since  ( )   , then given 
    there exists a weak-  (   )-slice  (     ( )) of arbitrarily small diameter, let 
say    (i.e.,     [ (     ( ))]   ). If 
 

   {     ⟨    ⟩     ⟨   ⟩   }  
 

then   is a subset  -open of   and  ( )     (     ( ))    since 
 

 (     ( ))  {    ( ) ⟨    ⟩     ⟨   ( )⟩   }  
 
      By lemma 3.10.(ii), there exists an open nonempty subset     such that  ( )  
  and, therefore,  ( )   ( ) and  ( )     ( )   (     ( )). So that, 
 

    ( ( ))                      
 
which shows that    is dense in  . From previous claims, we have that {      } is a 
countable collection of open and dense subsets in  . We remark that 
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⋂ 
   

   {     ( )                           }     

 
      Indeed, if   ⋂       , then 

    ( ( ))                            
 
that is,  ( ) is a singleton for all   from the dense residual subset   of  . We have, 
thus, shown that   is single-valued in a residual subset of  , and so    ̂. 
 
      Now, we will establish that  ̂    . Let   be a Banach space in Stegall’s class  ̂. 
That is, (    (    )) is an  -space ((    (    ))   ). That is, any minimal usco 
function of a Baire space   in    is single-valued in a residual subset. We must show 
that   is a  -Asplund space. Let       be a continuous convex function, where   is 
a convex open subset of   and show that this function is  -differentiable in a residual 
subset of  . The subdifferential of   is the multivalued function         defined as: 
 

    ( )  { (   )   ( )       ( )                              }  
 
      By theorem 3.1.7, the subdifferential    is a usco function considering in   the 
norm topology and in    the weak-   topology  (    ). By theorem 3.7, there exists a 
minimal usco function        such that     . Since   is a Baire space, 
(    (    )) is completely regular and        is a minimal usco function, then   is 
single-valued on a residual subset   of  . It remains to verify that   is  -differentiable 
in  . Let     (arbitrary but fixed) and    . Then  ( )  { }. As  ( )    ( ), 
then     ( ) and, therefore, for a     small enough we have to 
 
              (    )   ( )       (  )                                                        (10) 

 
       Let     (    ). Then     (    ) and, therefore, by changing the variable 
      , we have that 

 (  (   ))   ( )        (   ) 
        ( )   (    )        (   )  

which implies that 
 

                           (    )   ( )        (  )                                                         (11) 
 
      Since    , from (10) and (11), we obtain that 
 

 ( )       
(    )   ( )

        ( ) 
and, therefore, 
 
                   (    )  ( )   ( )        ( )   ( )                                               (12) 

 
      Now, let     be such that 

  {     | ( )   ( )|   } 
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is a  (    )-open neighborhood     . Using the upper semicontinuity of   in    , 
there exists an open neighborhood     of   such that 

 ( )                       
 
      There exists a     such that        if      . So that, 
 

 (    )                   
 
and, therefore, 
 
                          ( )   ( )                                                                         (13) 
 
      In virtue of (12) and (13), we conclude that 

 
                                                

    
 (    )  ( )

   ( )                                                 (14) 
 
      Since     , so 
 

   
   

 (    )   ( )
   ( )                                      

 
      We have, thus, shown that   is  -differentiable in a   -dense subset   and hence 
    . 
 
Proposition 5.1.2  Every separable Banach space belongs to the Stegall class. 
Proof. Suppose   is a separable Banach space. Let 
 

    {      ‖ ‖    }              (    )|     
 
      By the Banach-Alaoglu theorem, the closed unitary ball    de    is  (    )-
compact, then by theorem 5.1 we have that (     ) is metrizable and (     )   . As 
 

   ⋃  
   

                           (    )          

then (    (    ))    by theorem 5.5 and therefore    ̂. We have, thus, shown that 
  is a Stegall space. 
 
Remarks 5.1.3 
 

1) In general     ̂ (strict inclusion). Indeed, let us consider      ( ). It has 
been showed that the ‖ ‖  is not  -differentiable at any point, but by theorem 
5.1.2 we deduce that   ( ) is a Stegall space because it is separable. 
Consequently,   ( )   , but   ( )    . 

 
2) In general  ̂     (strict inclusion). To prove this result, we should go beyond 

the separable Banach spaces. Indeed, it was shown in theorem 5.1.2 that a 
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separable Banach space is a Stegall space. Furthermore, Mazur's theorem assures 
us that the separable Banach spaces are also  -Asplund spaces (see (8)). Kalenda 
in (8) showed that there are  -Asplund spaces whose dual with the weak weak-   
topology do not belong to class  ̂. That is, there exist  -Asplund spaces which 
are not in the  ̂ class. 

 
3) There exist Banach spaces that are not  -Asplund spaces, for example, the 

nonseparable Banach space      ( ) is not a  -Asplund space. 
 
5.2  Example of Usco Function 
 
      The Supremum Mapping 
 
      As it is well known, the problem of the differentiability of convex functions is well 
addressed by Fabian in (1). Let   be a compact and Hausdorff topological space, and 
 ( ) be the Banach space of the continuous functions of   in   with the norm ‖ ‖   
   
   
| ( )|. We define the supreme function on  ( ) as 

   ( )    
 

                                          ( )     
   
| ( )|  

 
      This function is sublineal and, therefore, convex. In addition, we define  

   ( )    
                                                                   ( )  {     ( )   ( )}  

 
      This is a multivalued function that assigns to each function   the set of points     
in which the function attains the supremum. We will call   the supremum mapping. We 
remark that the function    ( ) is a usco function. Indeed, 
 

I. It is clear that  ( ) is compact because 

{     ( )     ( )} 
                  is closed in  . As   is compact, 

 ( )                          ( ) 
                  and, therefore,  ( )    for all    ( ). 
 

II. We will show that   is upper semicontinuous. We argue by contradiction 
assuming that for some point    ( ) there is an open neighborhood 
 ( )    such that on every open ball  (   ) there exists a   such that 
 ( ) is not contained in  . That is, there exists a sequence (  )    such 
that ‖    ‖    and  (  )      . Let     (  )     and we 
remark that 

             ( )       (    )   (  )   (    )  (    )(  )   (  )  
                                      ‖    ‖   (  )  
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As    is compact, the sequence (  )    has limit value     . Since   is a 
continuous function,  ( ) is an adhesion value of the sequence ( (  ))    in 
 . Therefore, there is a subsequence (   )    such that  (   )   ( ) and 
how ‖    ‖   , then  ( )   ( ). In addition,  ( )   ( ), and, 
therefore,  ( )   ( ), i.e.,    ( )    which contradicts that     . 
We have shown that   is upper semicontinuous. 

 
      In summary,   is a usco function. We emphasize that this example is closely related 
to the differentiability of the supremum norm in  ( ).  
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