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Abstract
In this paper we adapt the work of M. Grillakis, J. Shatah, and W. Strauss, or J. Bona, P.
Souganidis and W. Strauss to the periodic case in spaces having the mean zero property in order
to establish the orbital stability/instability of periodic travelling wave solutions of a generalized
Korteweg-de Vries type equation.
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1 Introduction

In this work we analyze the stability and instability of periodic travelling wave
solutions u(x,t) = @z — ct) ({ = & — ot periodic) of a generalized Korteweg-de
Vries class of evolution equations of the form

w4y — Mu, + (u"), =0, (1)

where wu(x,t) is a real valued function, p > 1 is an integer, and M is a constant
coefficient pseudo-differential operator of order g > 1, having the form of a multi-
plier operator of the following type

Mu(k) = |k|#a(k), ke Z,
where @(k) denotes the k-Fourier coefficient of u.

It is well known, these models describe the unidirectional propagation of
weakly nonlinear, dispersive, long waves with small amplitude. For M = —H‘f
and p = 2, the equation (1) corresponds to the classical model derived in 1895 by
Korteweg and de Vries for surface water waves in a canal see [3]

tty + Uy + Uger + () = 0. (2)
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For M = =32 and p = 3, equation (1) is known as the modified Korteweg and de
Vries equation
uf + u_r + t‘::; + {u:;};'_, = [L {3:'

The well known Benjamin-Ono equation is associated with g = 1 and p = 2.
In this case, M = Hd,., where H _'___E!-Hll.ﬂli-m the periodic Hilbert transform, having
Fourier coefficients of the form Hf(k) = —isign(k)f(k), and equation (1) takes
the form

ty + uty — Mgy + {HZL = (. (4)

Regarding the KdV equation (2) in the periodic case, Angulo, Bona and Scialom
in [4] showed the existence of a branch of enoidal (e =+ .) solutions with a fixed
period L and having mean zero in [0.L]. They also established the nonlinear
stability of the orbit {.(- +y) : y € R} in the space H, ([0, L]} and also in the
closed subspace of H),.([0, L]) defined as

L
W} = {,fEH’,,[[{},L]]:[} f{:.-:}dr=ﬂ}.

For Instability of 2L-periodic cnoidal waves, N. Bottman and B. Deconinck showed
that the waves are spectrally stable analytically and numerically see [5]. Also B.
Deconinck and T. Kapitula proved that the periodic travelling waves for the KdV
model are orbitally stable subject to perturbations which are nl-periodic for any
given n € M see [6). We must point out that M. Johnson established an orbital
stability result in the same fashion for the case M = —@2, as the one presented
here see [7]. In the later work, M. Johnson followed some of the ideas used in
the case of the orbital stability of waves to the nonlinear Schridinger equation

obtained by T. Gallay and C. Haragus in|8].

In a recent paper, Angulo and Natali in [9] obtained H]L'm,,-stahility results for
the KdV model (2) (p = 2), the generalized KdV model (3) (p = 3), and the BO
model (4) (p = 2). They make use of the theory of totally positive operators, the
Poisson summation theorem and the theory of Jacobian elliptic functions. We also
have to mention that Gardner in [10] obtained an instability result for periodic
travelling waves of equation (1) when p > 5. In that paper, it is assumed the exis-
tence of a family of large wavelenght periodic waves U such that the period 27,
tends to infinity as ¢ tends to zero. Gardner proved instability of the travelling
wave U7, for p > 5 and for ¢ > 0, but small enough.

In order to discuss the stability/instability issue, we note that the generalized
maodel (1) has the Hamiltonian form

ur = JE (u)

where 7 = =, and F is the functional defined in HE,-I:[{], L|) or WF as

E{H} = —[L (1T!.Li'l'l'?! = lu"‘! — 1 ul’-‘+]) dr
o \2 2 ptl
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with W} denoting the closed subspace of H?_ ([0, L]} given by

L
Wi = {f € H,..([0,L]) :fn flz)dz = u} , seR.

We note that f € W if and only if f(z) =37 fne™™ ™ with fy =0, and

= 4m¢|n2\*
> (142 i <
-

As it is well known, E and the following functionals are time invariants of the
motion generated by equation (1)

Viu) = j: u? dr,

L
I{u) =[] ud.

We will see that under certain conditions periodic travelling waves ¢, for ¢ > 1
are stable if and only if

d(c) = Flwe) = E(pe) + cVige)

is a convex function of .

If we consider the KdV type models (2), (3) or (4), we are almost in the exact
setting of Grillakis et al. general results in [1] in the sense that the operator
8 : Wi — Wi ! is a bijection. It is very important to note that in those
particular cases, the eigenfunction y. € HIL,{[D, L]), associated with the unique
negative simple eigenvalue of F"(y.) does not satisfy the mean zero property in
[0, L], since due to an oscillation argument the eigenfunction y,. can be taken ei-
ther positive or negative. In other words, the result of stability /instability in either
Grillakis et al. in [1] or by Bona et al. in [2] does not apply directly in the case of

having the mean zero property.

Regarding instability, we observe that the result for fixed ¢ obtained by Grillakis
et al. in [1] (or by Bona et al. in [2]) relies on three basic facts:

l. the existence of a curve parametrized hy the wave speed
W=+ Yy = P+ 3{[""]11: = HI+%{E}

(v is the eigenfunction associated with the unique negative eigenvalue of

F'(@e))s

2. the existence of an element y = d, ¥ |{=w) € H%(R) such that
{F" (e )y, y} < 0. and

3. the existence of a Liapunov type functional B defined in a tube in H% (R}
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Even though there are some recent results related with the stability /instability
of periodic travelling wave solutions for the KdV equation, which could be more
general or whose proofs use more sophisticated techniques, we consider a classical
strategy to analyze stability and instability in the sense that we just adapt the
work of either M. Grillakis, J. Shatah, and W. Strauss [1], or J. Bona, P. Souganidis
and W. Strauss [2] to the periodic case using a space with the mean zero property.
In particular,

14§

1. we will see how to build a curve w — ¢, on the mean zero space W, " *,

2. we will show the existence of an element y € I—I’E satisfying that
(F"(pe)y.y) <0, and

3. we will cstﬂb]ish the existence of a Liapunov type functional £ defined in a
tube in W/ .

In other words, we will show that the classical approach used by Grillakis et
al. in [1] {or by Bona et al. in [2]) to establish stability /instability of solitons
still holds in spaces with the mean zero property to analyze stability/instability
of L-periodic travelling waves.

This paper is organized as follows. In Section 2, we consider the analysis of
periodic travelling waves solutions for equation (1). We will see that these solutions
are critical points of the functional £ subject to the constrain V' constant. In
Section 3, we adapt to the periodic case the work by Grillakis et.al [1] or Bona
et al. [2]. One important fact in case d”(¢) < 0 is that these critical points are
saddle points but not local minimum, in contrast with the case d"(¢) = 0, where
these critical points are in fact local minimum. We also discuss the instability
and the stability issue. In particular, we construct a Lyapunov type functional as
done for soliton in ([1, 2]). Then the instability and stability follow exactly as in
([1, 2]). For the sake of completeness we include some of the proofs. In this work,
we do not address the well posedness of the Cauchy problem associated to the
generalized KdV equation (1) due to the huge number of references related with
the generalized KdV model (see [12], [13], [14], [15], [16]).

2 Periodic travelling waves of the generalized KdV type model

Let assume that ¢ > 1 and that u(x, 1) = . (x—ct) is a solution of the evolution
equation (1) with ¢ being a periodic function with the mean zero property in [0, L].
Then we have that . satisfies the equation

—Ci,.':'r = 'ﬁzJ‘!’I&p I‘I‘ Hx; + a;gl,.’?'" = ':'

integrating this equation and using the periodicity of ¢.., then we find that . also
satisfies the equation

Mg +ep—p—pf=A (5)
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We observe for p even that A must be different from zero due to the assumption
on the mean property in [0, L]. Now we note that the previous equation has the
form
EF{WI:} + ‘-‘F’{'P::} =4
since
E'u)=Mu—u—u", and V'(u)=un.

Moreover, . is a critical point for E{u) + ¢V (u) in a space having the mean
zero property in [0, L]. In fact, let v have the mean zero property in [0, L], then

L
(E' (o) + eV (g, v) = (A,v) = AA v{x)de = (. (6)

On the other hand,

E'(u)=M =1 - pu*!

and the linearized operator £, of the operator F' in ., around .., is giving by
Lo=F'(pc) = (M+c—1)—pel™"

The first observation is that A = 0 is an eigenvalue of L., since L.(d,e.) =0
and @, trivially has the mean zero property in [0, L]. In some case, it is possible
to establish that A = 0 is a simple eigenvalue of £. ([9], [18]). Before we go further,
we observe that £, is a linear, closed, unbounded, self adjoint operator defined on

a dense subspace of L2, ([0, L]) denoted with D(L£.) and range L2, ([0, L]). Now,

e T

if we consider the periodic eigenvalue problem associated with £

Lo =M
{viﬂi =v(L), v'(0) =v'(L) (7)

we have from the theory of compact symmetric operators that the spectrum of
L. has an enumerable (infinite) set of eigenvalues (Ag)7=, such that Ap — 00 as
k — oo, More exactly,

Proposition 2.1 The operator L is a closed, unbounded, self-adjoint operator on
Lﬁﬁr[[ﬂ. L)) _u:'.l’i.r:_rsﬂ speclrum consists in an enumerable (infinite) set of eigenvalues
(Ax)izo satisfying

A <h <o A=, as k= oo

Moreover, L. has A =0 as an cigenvalue with eigenfunction d,p..

Proof. It is straightforward to see that £, is a closed, unbounded, self-adjoint
operator on L3 ([0,L]). As we discuss above, A = 0 is an eigenvalue since
Lo(3p.) =0 and 8., has the mean zero property in [0, L].

Now consider the operator defined as K. = M + ¢ — 1. We observe that the
representation of K. is given by the Fourier symbol K.(n) = |n|* + ¢ — 1, for
n € £. Moreover, since ¢ > 1 the operator K. is invertible with Fourier symbol
W € l(E), since i > 1. As a consequence of this, there is a unique operator

K-! = N, € £y(L2, ([0, L])) with Fourier symbol N.(n) = W Moreover,

peEr

the representation of this operator is given by
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L i, ana
h,_—ﬂ{ﬁ} = E (m) l’.g'!f_.‘

nek

Clearly, the operator N, is self-adjoint and compact on L3.,.([0, L]) for ¢ > 1 and
p=1.

Now we observe that for some p > 0, the operator M, = L. + p is positive. In
fact, let u € D{L.). Then using Parseval Theorem,

(Lou,uy = %Z ((In]* + e = D)) [*) d¢ = C(@)llull;
nel

> —pilluld, m=Clg)—(e—1).

Then for any p > py, the operator M, = L. + p is a positive and self-adjoint,
and so is the operator Mp". On the other hand,

My=C.+p=M+e-1-pp* ' +p
=M+v+p-1-(v—c+pp" )
= l."'l-P_'P:|
where P = v — e+ py? € £y (L},,) with v > 0 such that v — e+ pe® > 0. As

a consequence of this, for v + p > 1, we have that K., is invertible with inverse
Nutp. Then we conclude that

Notpo My =1la=Zp),  Ziwp) = Nospo P. (8)

Since N,., is a compact operator for v + p > 1 and P € £, (L%,.,), then we
conclude that 2y, ., is compact. On the other hand, a direct computation shows
that

1
2 2y < +e+C
Zwnley(zs,) <50 (=g ) @+ e+ Cullelo)

then, taking p sufficiently large such that the operator || Z, ofed,) < 1, we

have that (I — Z, )" € Ly (L}, ). Moreover, from the equality (8) we conclude
that M is compact since Ny, is compact, (I — Z, )" € Ly (L3, ), and that
Ms V= Iy — Zipp)) "' Niugp. Thus from the spectral theorem for compact self-
adjoint operator, we infer that there is an orthonormal basis () C L%, which
are the eigenfunctions of M with non-zero eigenvalues (o ); such that

Fgloagp=ag = >0, op =0, F— oo

From this, we conclude that

Legr = Apign,
where Ay = (i - ,r}) wr. Then we have shown the existence of sequence of eigen-
values {Ag)g for £. such that
AMEMZ S A= oo, koo 0
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It is also important to see that depending on the form of the operator M, it
is possible to show the existence of a branch of solutions . (parametrized by the
wave speed ¢), having a fixed minimal period L. For instance, in case M = —8%,
then the theory of elliptic functions can be used to build periodic solutions, having
the reneral form of the Jacobian ellintic functions snoidal. enoidal. dnoidal tvoe.
In case, M = Hd, and p = 2, Benjamin in ([11]) found a bram:h of travelling wave
solutions .. with minimal period L for equation (4) when ¢ > 2%, having the form

eole) = (.:m,-l.[ e (JT)) , tanh(y) = f_;r 7>0.

) — cos

A simple computation shows that the BO model (4) when ¢ > 2%, has a fam-
ily of travelling wave solutions ¢, with minimal period L having thn mean Zero
property in [0, L]. In fact, if we define ¢, as 1. = . — p, where p is the average of

on [0, L], then i, is solution of minimal period L of the (BO) model (4) with
wave speed ¢ = ¢ — 2p, and having the mean zero property on [0, £].

We will impose the same type of hyvpotheses adopted by Bona et al. in [2]
to obtain sufficient and necessary conditions to guarantee stability /instability of
L-periodic travelling wave solutions of the generalized Korteweg and de Vries equa-
tion (1) in a space having the mean zero property in [0, L].

Assumptions on £, and ..

(H.1) There is an interval (¢y,¢e2) € [1,00) such that for every ¢ € (¢, ¢2), there
is a solution . of (5). The curve ¢ —+ . is C! with values in W“ i

(H.2) The operator £, has a unique, negative, simple ﬂgl"'ﬂ\“‘ll"{" WJrh eigenfunc-

tion y. € H;]J.r‘.‘r; ([0.L]). A = 0is a simple eigenvalue of £, with eigenfunction
o, and the rest of the spectrum of £, is positive and h-c:ulnrl{'u:l away from zero.

Moreover, The curve ¢ — . is a continuous with values in H; I tE

Now we precise the mmmng of the stability and instability concept. For ¢ > 0,

consider the tube in W_,

5
U, = {u W, : 111f le — Tr\'gr”ff:*’,. (0.LI) < e} .

where 7.(f)(x) = f(r + z), € R. This set is a neighborhood in WE of the
collection of all translates of ...

Definition 2.2 The periodic fravelling wave . is stable if and only if for e = 0
there exists n > 0 such that if up € Uy, then u(-,t) € U, for allt € R, where u(-,t)
denotes the unique solution of the Cauchy problem associated with the generalized
KdV type equation (1), with initial condition u(-,0) = ug(-). We will say that the
periodic travelling wave .. is unstable if . is not stable.
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3 Adaptation of Grillakis, Shatah, Strauss Approach

In this section we adapt the Grillakis, Shatah, Strauss Approach, assuming
that £, and . satisfy (H.1) and (H.2). We start the discussion by proving a
simple result regarding the operator L., @, and x., which will play an important
role in our analysis. Hereafter, either p is an integer or p = 71 where m), m2
being positive integers with me odd.

Lemma 3.1 Forc>1andp>1,
{@er Xe) # 0. (9)

Proof. First we observe that a direct computation shows that

L
(Le(pe)re) = (1—p) fu (M, + (c— 1)g?) de < 0. (10)
On the other hand, we have that

'::“Fq:-.- 'r"ﬁ:} = 0.

Using this fact, we are able to decompose @, as ¢. = 9y. + ppo, for some py in
the positive subspace of £, orthogonal to y. and d.p.. In this case, {p.. x.) =

v # 0, otherwise ¢, = ppy and {(L.(p.), ge) = ° {Le(po), o) = 0, contradicting
(10). O

Before we go further, we note that equation (6) gives a characterization of . as
a critical point of the functional £ in W} subject to the constraint V() = V(u),
and so . is either a saddle point or a local minimum, We will see as in [1, 2] that
in the case d"(c) < 0, the function .. is a saddle point but not a local minimum,
. We will =ee in next section that the function . is critical point, which is in fact
a local minimum, when d”(c) = 0.

In the coming result, using a slightly modification of the argument of Grillakis

et. al. in ([1]), we are able to build a curve w — @, € W;f+% satisfying conditions
(1) and (2) described in the Introduction. Moreover, condition (3) regarding the
existence of a Liapunov type functional is established in Lemma (3.4) below.

Theorem 3.2 Let ¢ > 1 and p > 1 be an integer. If d"(¢) < 0, then there is a

CUTDE W — P, € W}f% which passes through .., lies on the surface Viu) = Vig.),
and on which E(u) has a strict local mazimum at u = ..

Proof. For w near ¢, we will see via the Implicit Function Theorem that there is
a differentiable function s(w) such that s(e) = 0.

Consider the function (w, s) = ¢, ) € l-i’£+"*: defined as ¥y, ») = ¢u + sp.. Note
for w = ¢ and s = 0 that ;. o) = @ and V(. 0) = V(). We observe that

a. .. L o,
mviv{”-"]] {s=l), w=e} =V {Tﬁc}("pf} _‘L ‘lpr{x}d'r > 0.
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From the Implicit Function Theorem, we assure the existence of a function
s(w) defined for w near e. Now, we set i, := ¥ siw))-

Then, since == " () = (V' (¥u), .m‘r’w} 0, we conclude that

4 pg) = (E’tmim) - (E’wu}wvm},%wu)

Using this and that J_u;' U, (x)dx = 0, we have that

L_':E(%) = i—i (B(vy) + wV (¥.))

d?
= <H’(¢“] + wV' (), E%)

+ ([L-."rl['!.n'f'u} 4wV () (%) ’ (%))

g I.JW(I}
o dw?

+ (tE"{m V() (

= (@@ +ovwa (52) - (52))-

Evaluating this at w = e, we have that

=A

¥ dl'-l"w d ]
Eltu)fw=ec} = {Lcw,y), where y=—— =S + 5'(e)e.

dus? et w=e} i

Using that V{p,.) = V(¥,), we have that
d L d ,
0= LVWlwma = [ wpeds=(Toepe) +5() (pep)
il
= T Vipe) +8'(c) {pes pe)
Thus we then have that
~ d
| veedr=0, and @0 = £V(p) = -0 (0 <0. (1)
u -

Note that in particular, s'(¢) = 0. On the other hand,

Loy = L. (*f;f_) + S (DLulpe) = —pe + LELale).
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Since (y, .} = 0, conclude that
(Ley,y) = 8'(€) (Lelipe) )
= E:I:'C} ((ﬁc[‘Pc}' di=> + Sa{c] (Lel@e), fﬁr:')

= —5(¢) {perpe) + (') (Lelpe), )

= dﬂ':'ﬂ:' + {31{9}}2 (Lelpe). oc) -

But we show in previous Lemma that (£.(¢.), @) < 0, for that ¢ > 1 and p > 1
(see 10). In other words, we have established that

a*
FE‘(%#H]I{M:E} = {-'Cclf.- y} < ﬂ'! o> l: > 1.-

as desired. O

Hereafter we only present the analogous result for the periodic case obtained
by Grillakis et. al in [1] (or by Bona et. al. in [2]), pointing out the appropriate
changes.

Lemma 3.3 There exist € > 0 and a unique C' map o : U, = R/L such that
1 {u(- + a(u), d:p:) =0,
2. afu(- + 7)) = alu) = r modulo the period,
2 alp.) =0,

; _ drigel-—alul}
4. ETL] T IFua)ieeiz-alu))de

Recall that we established for ¢ > 1 and p > 1 the existence of y such that
(Ley, ) < 0.

Using this fact, we are able to establish the following result.

Theorem 3.4 Lel B the funclional defined as

(u y(- — a(u)}}

0, o= a(u))) =0l ~ alw)-

Biu) = y(- — alu)) —

Then B is a C function from U, into WE such that commules with transla-
tions, Blp.) =y, and {B{u),u) =0, for u € U,.

The only comment is that B{u) has the mean zero property in [0, L]. In fact,
sinece i € W;?,
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- I ] = LT O— el ) ) — {U-_!,I'['—ﬂ(u]}} e = — kit L_
[ Bw@ s = [y - aw)de - ZEE S0 o~ au)| | =0

As done in Grillakis et. al paper [1] (or Bonna et. al ([2])), we may consider
the initial value problem
{ ) (12)

u(0) =veld,.

Corollary 3.5 If u = R(\v) denotes the solution of the initial value problem
{12). then we have

1. R is a C function for |X < o(v) for any v € U,,
2. R commutes with translations for each X,

3. V(R(A v)) is independent of A, and

4. 3R0,0.) =y.

We want to point out that the proofs of the previous result and the three
coming results are the same as those in Grillakis et. al. work ([1]), except for the
last one in which we have to use the particular property of functions ¢, and x.
established in Lemma 3.1.

Lemma 3.6 There is a O function A: {v € U, : V(v) = V(g:)} = R such that
E(R(Av)) > E(pe)
for all v € U, such that v € U, and v & {p.(- + 5): 5 € R}.

Lemma 3.7 For v € U, such that V(v) = V(g:) and v & {p.(-+8) : s € R} we
have
E{g.) < E(v) + Alv) {E'(v), B(v)).

Lemma 3.8 The curve ¢, satisfies El(gy) < E(pg.) for w # ¢, Vigy) = Vi)
and Alv) {E'(v), B(v)) changes sign as w passes through c.

Proof. From the proof of Theorem (3.2), we have that y = ﬁiﬂc + 8'(e)yp., with

#'(¢) = 0. Then as in either [1] or [2], we only need to assure that (G'(yp. )y, x.} # 0.
But we have that

{GF{';!?-:}U" Xe} = AW Xe}
= (% +4@) (e

Since Ap < 0, §'(¢) > 0, and from (9), we conclude that {G"(w.)w x.) # 0.
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3.1 Stability and instability of periodic travelling waves

Now we are in position to establish the necessary results to show instability
and stability, which are an adaptation of the work by Grillakis et. al. ([1]) or by
Bonna et. al in ([2]). Recall that we showed that . is a saddle point but not a
local minimum, in case for d”(e) < 0. Moreover, as done in Grillakis et al. ([1]-
Theorem 4.7) we have that

Theorem 3.9 Lel e > 1 be fized, If d”(e) < 0, then the .- orbit is WE -unstable
with respect to the flow of equation (1).

Now we will discuss the stability issue. We start establishing that ¢, is a
critical point which is in fact local minimum, when d"{¢) = 0.

Theorem 3.10 Let ¢ > 1 be fized. If d"(c) > 0, then there is a constant C' > 0
and € > 0 such thal

E(u) - E(pe) > Cllu(- + alu)) — ¢l 4

for all u € U, which satisfy V{u) = V).

Proof. For the sake of completeness we include the proof as in ([1]).

If (w,pe) = (w,d:0.) = 0, then w = ay,x + 41, where py is in the positive
subspace of £.. On the other hand, we have the following decomposition for d.iz.,

Oeipe = apx + Bodee + Yopo-

Using that /L, defines an inner product in the positive subspace of £., we have
that

Lep1,po)’
Low,w) =a? F{Leprap) = aF 2 {LcP1oPo)” 13
(e, w) ﬂ:rl'ﬂ‘f"h{ P11} 2 oy Ao + 77 (Lo, o) (13)
On the other hand,

0= {—pe,w) = {Lode0e, w} = apar o + Y071 {LePo, 1) - (14)

But we also have that
d"(€) = (@e, Oeipe) = = (Lebeipe, eipe) = 'HEJ'LD - 'Tﬁ {Lepo,po) > 0.

Then we obtain that

0 < 73 (Lcpo.Po) < —apho. (15)
Using (14) and (15) in inequality (13), we conclude that
20222 2
E‘_ LI T ] Hﬂnl ﬂ) ( F:'Iﬂ ) —_ []. 16
(Coww) > oo+ (292 ) (B (16)

We have already shown that if IT denotes the orthogonal projection onto [ )"

then there exists a positive constant § such that for w € Hir with {@.,w) =0,
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(Low,w) = 5||llm||if£r. (17)

Let u € U, and consider z = u(- + a(u)) — py.. where p is chosen such that
{z.¢c) = 0. Now, by (3.3)-(i) and using that . and d.¢. are orthogonal, we
conclude that (z, 8.} = 0. In other words, z is orthogonal to ¢, and d.p.. As
a consequence of this,
(Lez,2) 2 E5|IZ|Ii|_a=; . (18)
pEF

Now, using the translation invariance of V',
Vipe) = V(u) = V(u(:- + afu)).
Then by Taylor's Theorem we conclude that
Viwe) = Viul: + a(u)))

= Vi) + (pesu- +aw)) = ) + O ( (lut-+ a(w) - el y )

peE

= V(e + (o= Dlielity, +0 (lut-+a(w) = pel?, g )

per

In other words, we have that p— 1 = O ((Hu{- + afu)) — '5"'*'"?;'& ) Using the

same argument on the Taylor expansion for F, Flu) = Flu(- + alu)))

1 2
= Flpo)+ 5 (Llul-+a(w) = w0 ut- +a(w) - ¢ +0 (b2 )

per

where v = ul- + au)) — .. Moreover, v = u(- + alu)) — . = (p— ). + 2.

Then, last equality implies for ||'u||H small enough that
per

Bl - E(p) = 5 (€x(ut-+a(w) = ol + aw) = 2) + 0 (vl )

pEr

- 5 o) +0 (Inl2y )

= 5 (€u(2),2) + O((p = 1Y) + Ol(p = Vvl ¢ )

2
+aﬁwmi)

&
:}'— 2- 2I.
_gmmh+uommh)

e

8 : 2
> & [l 5~ to—tibedg | +0 (1012 )
4 2
} - ) i,
= 4”1"1'3,.5”
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Finally we are able to establish the stability result.

Theorem 3.11 The periodic travelling wave . is stable if and only if d"(¢) > 0.

Proof. Suppose that d"(¢) > 0 and assume that . is unstable.

Let {{ttom)n} € WE be any sequence such that

'rj.lili-]-'.'jx,: ilij ”uﬂ‘.'!l - :_Pg:{' + '-"] ||f_f'::f..,_ = ()

For each n, let u,, denote the unique solution of the Cauchy problem associated
with the generalized KdV equation (1) with initial condition wug . Take (t,,), such
that, for each n we have that u,(-,{,) € @d1,. Due to the translation invariance
of the continmous functionals £ and V', we conclude that,

E(un(-,t,)) = E(uon) = E(gc), and V(ua(-ta)) = Viuon) = Vie).

But we are able to choose w,, € I, such that ||u, — w,(-, ;)] — 0.
Then by Theorem (3.10) we conclude that

”'i'_L'ﬂ _ ﬁ?c{'!ﬂ{w“”“iﬁr = Il wrr{-,ﬂiwrt]} - 'Ia:“iﬁr
1
< E{E[w,.} — E(gc)) = 0.

This fact implies that,

0= lim |Jw, — u,(-. t"HIH!i - “151_:‘_ |t — -, u[m,,}}llﬂg

e 00 FET per

= nlipn-:::l-u lun(-stn) = wel- alwy)) |IHEE =0

peEr

In other words, u,(-. t,) tends to the orbit of ., proving by contradiction that .
is stable. The other direction follows by noting that the set {c > 1: .} is stable
is an open set and by using Theorem (3.9).

a
Acknowledgments: J. Quintero was supported by Universidad del Valle, Cali,

Colombia. This work was completed and revised while JR(Q) was on sabbatical

(01-2009/01-2010).

70



A note on the stability and instability of travelling wave of Korteweg-de Vries type

References

[1] Grillakis, M., Shatah, J., and W. Strauss. (1987). Stability Theory of Solitary
Waves in Presence of Symmetry L., J. Functional Analysis. 74, 160-197.

[2] Bona, J., Souganidis, P. E., and Strauss, W. A. (1987). Stability and Instability
of Solitary Waves of Korteweg-de Vries Type. Proc. R. Soc. London A. 411,
305-412.

[3] Korteweg, D. 1., and de Vries, G. (1895). On the Change of Form of Long Waves
Advaneing in a Rectangular Canal, and on a New Type of Long Stationary
Waves. Phil. Mag. 39, (5) 422-443.

[4] Angulo, J., Bona, J., and Scialom, M. (2006). Stability of Cnoidal Waves, Adv.
Diff. Equations. 11, 1321-1374.

[3] Deconinck, B. and Bottman, N. (2008). KdV Cnoidal waves are linearly stable.
preprint.

|6] Deconinck, B and Kapitula, T (2009). On orbital (in)stability of spatially Peri-
odic stationary solutions of generalized Korteweg de Vries Equations. Preprint.

[7] Johnson, M. (2009) Nonlinear stability of periodic traveling wave solutions of
the generalized Korteweg-de Vries equation. preprint.

8] Gallay, T. and Hardgus, M. (2007). Orbital stability of periodic waves for the
nonlinear Schridinger equation. J. Dyn. Diff. Egqns. 19, 825865,

9] Angulo, J., and Natali, F. (2008). Positivity Porperties and Stability of Periodic
Travalling-Waves Solutions. Preprint.

[10] Gardner, R. (1997). Spectral Analysis of Long Wavelenght Periodic Waves
and a Applications. J. fiir Die Reine und Angewandte Mathematik. 491, 149-
181.

[11] Benjamin, T. B. (1974). Lecture en Linear Wave Motion, Nonlinear Wave
Motion, AC. Newell, ed. AMS, Providence, RI 15, 3-47.

[12] Bona, J., and Smith, R. (1975). The Initial Value Problem for Korteweg-de
Vries Equations. Philos. Trans. Toyal Soc. London. Ser. A. 278, 555-601.

(13] Bona, ., and Scott, R. (1976). Solutions of the Korteweg-de Vries equations
in Fractional Order Sobolev Spaces. Duke Math J. 43 87-99,

[14] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., and Tao, T. (2003). Sharp
Global Well-Poseness for KDV and Modified KDV on R and T. J. American
Math. Soc.. 16, 705-T49.

[15] Kato, T. (1979). On the Korteweg-de Vries equation. Lectures Notes in Math-
ematics. 448, 25-T0.,

Volumen 14, diciembre 2010 71



Revista de Ciencias J. R. Quintero

16] Kato, T. (1983). On the Cauchy Problem for the (generalized) Korteweg-de
Vries Equations. Studies in Applied Math., advances in Mathematics Suppl.
Studies. 8, 93-128.

(17] Ince, E. L. (1940). The periodic Lamé function. Proc. Roy. Soc. 60, 47-63.

18] Magnus, W., and Winkler, 8. (1976) Hill's Equation. Tracts in Pure and Appl.
Math. 20, Wesley. N.Y.

Author’s address

José R. Quintero
Departamento de Matematicas, Universidad del Valle, Cali- Colombia
quinthen@univalle.edu.co

72



