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Abstract

Insufficient access to potable water is becoming one of the major threats to sustainable
development around the globe. The implementation of water conservation policies and the use of
mature and novel desalination technologies are key to address the water demand for an increasing
population. Desalination systems based on electrochemical cells are of current interest.

This paper discusses an electrochemical cell based on carbon electrodes modified with
polypyrrole and a polypyrrole/polystyrene sulfonate composite which have anion and cation
exchange properties, respectively. The cell was used to substantially decrease the concentration of
sodium chloride solution in the 10" and the 10> M concentration range. The long term stability of
this cell is also discussed.
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1 Introduction

Drinking water scarcity is one of the major threats to world sustainability. Efficient
use of water resources together with technological approaches are required to address
the potable water threat faced by an increasing population. In this context, the demand
for water desalination, deionization, and softening technologies is growing. Technologies
such as solar desalination, distillation, reverse osmosis (RO) and other membrane-
based technologies are available. RO is now very well established and has become the
benchmark for novel desalination strategies. There is, of course, plenty of room for flexible
technologies that can be used for small or large scales V).

Desalination and deionization technologies based on electrochemical cells have
been developed for a wide variety of applications because of their relatively low energy
consumption ¥, In this category, electrodialysis @ is the one technology that has
reached commercial success. In turn, capacitive deionization (CDI), that has been widely
researched in the past two decades, is trying to make the transition from the laboratory
bench to the market ©®. Finally, ion concentration polarization (ICP) is a more recent,
promising technology ©.
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CDl is a technology that removes ions from water as opposed to RO, which removes
water from salty solutions. In a CDI electrochemical cell, saltwater flows between a
cathode and an anode held at a potential difference sufficiently high to attract and adsorb
cations and anions, respectively. The electrodes are typically carbon based. Once the
two electrodes are saturated with ions, the polarity of the cell is reversed to release the
adsorbed ions into a drain stream. In more recent developments, the CDI electrodes are
coated with deionization membranes to overcome efficiency issues and sluggish kinetics.
In this regard, conducting polymers, such as polypyrrole (PPy) and polyaniline (PANI),
have been used as membranes for individual electrodes in CDI 7.

Conducting polymers are organic polymeric materials that can be reversibly switched
from a neutral (electrical insulator) to an oxidized (electronically conducting) state by
chemical or electrochemical oxidation and reduction (®!V. The electronic transitions are
accompanied by changes in ion transport, optical, and wetting properties. The transition is
accompanied by a flux of ions and solvent in and out the polymer. In the past 30 years, a
lot of knowledge has been accumulated on the mechanical, electronic, optical, and other
properties (12,

Charge transfer and transport in conducting polymers has been amply studied 9.
Ion exchange properties are largely determined by the nature of the electrolyte used
for electrosynthesis. Thus, when a conducting polymer (for instance, PPy) is prepared
as an oxidized film by anodic deposition in solutions of small electrolytes (typically,
NaCl, KNO, or LiClO,), anions enter the polymer to compensate for the positive charges
developed along the oxidized polymer backbone. Equation (1) represents the anion (A°)
exchange behavior in PPy as the polymer film is switched between its insulator (reduced)
and its electrically conducting (oxidized) form.
PPy —ne +nA" (from electrolyte) S LI PPy™(A),
“Reduced” form “Oxidized” form

(1

It is also known that electrosynthesis in the presence of large anions (for instance,
anionic surfactants and polyelectrolytes) induces cation rather than anion exchanging
properties in the polymer films as schematically shown in equation (2) using sodium
polystyrene sulfonate (PSS) as an example of an anionic polyelectrolyte.

PPy/PSS™(Na*)_ —ne’ S i PPy™(PSS™) +Na*

“Reduced” form “Oxidized” form

2

By combining (1) and the reverse of (2) as the anodic and cathodic reactions,
respectively, one obtains (3), which is the basis for an electrochemical deionization cell.

PPy + PPy (PSSA™) +nNa*+nA" S i PPy™(A) + PPy/PSS™(Na*)_ 3)
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Once this reaction is complete, the fully charged polymer electrodes can be discharged
by switching the cell polarity. In 1988, Shimidzu and coworkers used the concept described
by equation (3) to build an electrochemical cell made from PPy and a composite from PPy and
poly(vinyl sulfate) (PPy/PVS) 19, PPy and PPy/PVS were electrochemically synthesized on
indium tin oxide electrodes. The electrochemical cell was used as a proof of concept to decrease
the concentration of milimolar and submilimolar solutions of KCI by one order of magnitude.

Relatively thick films of PPy can be grown on several metal electrodes, including
stainless steel and nickel. For this particular application, electrode materials with high
surface-to-volume ratios, such as carbon cloth and carbon felt would allow for higher ion
exchange capacity, operationally defined here as the ratio of ions (salt) exchanged to mass
of dry, neutral polymer. These carbon electrodes are also useful because of their high
overpotential for the reduction and oxidation of water.

This paper refers to the fabrication of a reversible electrochemical desalination system
based on carbon cloth electrodes coated with PPy (as the anode) and a PPy/PSS composite
(as the cathode). PPy/PSS was used in this work because the mechanical and ion exchange
properties of this composite have been amply studied. The cell was used for galvanostatic
desalination of sodium chloride batch solutions in the 0.1 and 0.01 M regime. Monitoring
of the evolution of the cell voltage as a function of electrolysis time (or charge passed)
is useful to detect the end point of the desalination process. The ion exchange capacities
of the polymers in the cell are comparable to those of conventional ion exchange resins.
However, secondary reactions of the films degrade the electroactivity of these polymers
after a few desalination cycles.

2 Experimental Section

2.1 Reagents and Solvents

Pyrrole (Py, Aldrich) was purified in a neutral alumina column and stored under
nitrogen in the dark, Poly(sodium-4-styrenesulfonate) (PSS, average molecular weight
70,000, Aldrich), lithium perchlorate (LiClO,, J. T. Baker), and sodium chloride (NaCl, J.
T. Baker) were used as received).

2.2 Electrodes and Cells

All electrochemical experiments were performed with a PINE WaveDriver
10 Potentiostat/Galvanostat in home-made single- or double-compartment cells.
For electroanalytical experiments (chronoamperometry and cyclic voltammetry),
platinum disk electrodes (diameter = 0.5 mm) and stainless steel foils (area = 0.5
cm?) were used as working and auxiliary electrodes, respectively. Potentials were
measured against either a saturated calomel electrode or an AgCl/Ag quasi-reference.
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For bulk electrolysis (polymerization and desalination), electrodes were made out of
graphite tape (square weave, 0.56 mm-thick, Johnson Matthey) and/or stainless steel (302
series). Figure 1 shows the schematics of a cell used for polymerization and deionization
experiments. The electrodes and spacers fit in the grooves on the walls and on the bottom
to adjust the separation between the electrodes and the volume of the cell at will. Graphite
felt was placed between the electrodes to use the cell in the double-compartment mode.
Typical inter electrode distances were 1 and 2 cm, for single- and double-compartment
cells, respectively.

2.3 Polymerizations

Polypyrrole, PPy, was anodically synthesized at constant current in a two-
compartment cell from 0.1 M pyrrole + 0.2 M LiCIO, in water or acetonitrile containing
1 % water at 10+1°C. In turn, polypyrrole/poly(sodium-4-styrenesulfonate), PPy/PSS,
was prepared from 0.1 M pyrrole and 0.3 M (in monomer) PSS in water at 10£1° C.
The geometric area of the working electrode was 5 cm?. Typical applied polymerization
current densities and charge were in the ranges from 2 to 10 mA/cm? and from 100 to
2,000 C, respectively. A fresh polymerization solution (volume = 100 mL) was used for
every 1,000 C polymerization charge.

2.4 Desalination

Before use for deionization experiments, the freshly prepared PPy and PPy/
PSS polymer-modified electrodes were cleaned in deionized water in order to
desorb residual, unbound PSS and oligomers of pyrrole. The desorption process was
monitored by recording electronic spectra of the aqueous solutions in contact with the
polymer-modified electrodes which shows characteristic features of PSS (bands at 228
and 265 nm) and soluble PPy oligomers (broad absorption bands in the 300-400 and
in the 600-700 nm region).

The one-compartment desalination cells were made from PPy and PPy/PSS in 25 mL
of NaCl or KCI solution. The deionization solution was stirred and the temperature kept
at 22+1°C. The initial concentration of the electrolyte was varied in the range from 0.023
to 1.0 M. For the analysis of ion exchange capacity of individual polymers in desalination
cells, the polymerization charge of the polymer at the counterelectrode was typically
50 % higher than that of the working electrode. That is, the counterelectrode contains an
“excess” of electroactive material.

During desalination, concentrations of the electrolyte were measured by potentiometry.
Typically, 0.1 mL of the electrolyte solution was diluted to make the test solution for
analysis in the concentration range from 0.10 mM to 1.0 mM. The activities of chloride
and sodium ions in the test solutions were then measured with Hanna HI4107 (50 uM to
IM) and FC300B (10 uM to 1 M) ion-selective electrodes by the known addition method.
Conductance experiments were done with a YSI 3417 probe (cell K = 1/cm) and a YSI 35
conductance meter.
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2.5 Elemental Analysis

For these experiments, sample films of PPy and PPy/PSS were prepared on stainless
steel under galvanostatic control by passing 1,000 C. Freshly prepared films were used
to measure the composition of the films in their oxidized form. The samples of the films
in their neutral (reduced) form were obtained by reducing freshly prepared films at -1.0
V vs Ag/AgCl. Both the oxidized and reduced films were rinsed with water and then
dried in vacuum at room temperature for one day and then peeled off from the stainless
steel electrodes for analysis. Elemental analysis was conducted with a Perkin Elmer 2.400
CHNS/O Series II Elemental Analyzer.

3 Results and Discussion

3.1 Electropolymerization of Monomers on Carbon Cloth Under Current Control

Figure 1 shows the cell voltage as a function of charge recorded during the anodic
electrosynthesis of PPy and PPy/PSS on carbon electrodes. Polymerization at a temperature
close to the freezing point of the solvent is known to yield relatively uniform and highly
conducting polymer films (19,

3.0

Py

Cell Voltage, V

- - —Py/PSS

0.0

0 200 400 600

Polvmerization Charge, C

Figure 1. Anodic polymerization of 0.10 M pyrrole in water containing 0.32 M LiCIO, (continuous line) and
0.32 M PSS (dashed line) at carbon cloth electrodes (geometric area = 5 cm?) at 50 mA at 10° C in a double
compartment cell. A 10 cm? stainless steel sheet was used as the counter-electrode. The experiments were run
under an Ar blanket.

The cell voltage increases sharply in the first few seconds and then it increases slowly
until the end of the electrolysis, reflecting the increase of solution and film resistance with
time. The voltage required for the polymerization of pyrrole in the presence of PSS is lower
than that for the polymerization of pyrrole in the LiClO, solution. This is consistent with
the higher electronic conductivity of the oxidized form of PPy/PSS composite compared
to that of PPy.
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Table 1 shows elemental analysis of freshly prepared PPy and PPy/PSS films in
their oxidized and neutral forms. For PPy, the small difference between the expected and
experimentally found composition of the neutral PPy film is within experimental error.
The much higher than expected experimental H/N molar ratio found for the oxidized PPy
film is related to residual water. Oxidized PPy is known to be very hydrophilic. The CI/N
ratios reflect the amount of counterion present in the neutral (reduced) and oxidized films,
indicating that the film can exchange ca. 0.28 mol of counterion per mol of monomeric
pyrrole, in agreement with typically reported values (between 0.2 and 0.3).

For the PPy/PSS composites, the S/N ratio is a good indicator of the amount of PSS
incorporated into the films and the differences in Na/S ratios between the oxidized and
neutral films yield the amount of cation exchanged during redox cycling, ca. 0.24 mol
of Na per pyrrole monomer. It is important to mention that the amount of PSS that is
incorporated in the composite film depends on the concentrations of pyrrole and PSS
present in the polymerization solution !9, Therefore, for this study, all of the polymers
films were prepared under the same initial concentrations of monomer and doping ion.

Table 1. Composition of Free-Standing Films of PPy and PPy/PSS.

Films Molar Composition Relative To Nitrogen
Expected Experimental

C H [N Cl S Na
PPy
Neutral C,HN 4.06 |3.35 1 0.04
Oxidized C,H,N(CIO,), 4.11 | 4.70 1 0.28
PPy/PSS
Neutral C,H,N/(C,H SO, Na)_ 1 0.00 0.25 0.24
Oxidized CHN/(CH,SO,) Na, 1 0.00 0.24 0.01

3.2 Desalination Cells Made From PPy Anodes and PPy/PSS Cathodes

Curves of cell voltage as a function of charge, recorded during desalination of NaCl
solutions at C/PPy anodes and C/PPy/PSS cathodes electrodes, reaction (3), are shown in
Figure 2. Curves a, b, and c are titrations in 0.023, 0.11, and 0.1 M NacCl, respectively.
After the initial steep rise, the voltage increases slowly as a consequence of the potential
drop across the polymer-solution interface and the solution resistance. The subsequent
sharp voltage increase indicates the end of the ion exchange reaction. For curves, a, b, and
c, the first derivatives (dV/dC) show that the end of the reaction happens at 46, 61, and 72
C, respectively.
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Figure 2. Evolution of cell voltage as a function of charge passed during desalination of NaCl aqueous
solutions at C/PPy (anode) and C/PPy/PSS (cathode). Initial NaCl concentrations: 1.0 M (full circles), 0.11 M
(empty squares), and 0.023 M (full triangles). Constant current = 0.25 mA. Electrode geometric area: 5.0 cm?.

Cell volume = 25.0 mL. Experiments under an Ar blanket at 25° C.

The beginning of high voltage plateau, at the end of the curves, is consistent with
the start of a new electrochemical process. Oxidation of chloride ions to chorine gas was
readily detected at the anode. In addition, chlorine evolution is likely to induce irreversible
overoxidation of the PPy films after the ion exchange reaction has finished. Overoxidation
highly decreases the electronic conductivity of the film.

The charge used for ion exchange cannot be calculated from these curves because the
total charge during the reaction has two major contributions, namely the faradaic reactions
and the double layer charging which cannot be easily resolved 17-'®, Better estimates of ion
exchangecapacitiescanbeobtainedby comparingthe conductivity ofthe contactingsolutions
at the beginning and the end of the reaction. Thus, Table 2 shows the molar concentration
of NaCl before and after the desalination experiments in Figure 1 as calculated by ionic
conductivity and Na*® and CI" ion activity measurements with ion selective electrodes.

The ion exchange capacity of the desalination cell, expressed as the mili-equivalents
of chloride ion exchanged per unit of mass of dry PPy film is very similar to those of
commercially available ion exchange resins . The lower ion exchange capacity in the
more diluted salt solutions can be improved by better cell design and by decreasing the
current density in order to minimize the voltage drop across the cell.
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Table 2. Desalination of NaCl Solutions*.

Charge at rxn Mass of dry PPy NaCl Concentration, M meqCl
end point, C film, g /g of PPy
Initial Final
453 0.244 0.0231 0.0099 1.34
61.6 0.238 0.1100 0.0920 1.56
72.5 0.256 1.0000 0.9800 1.96

Electrochemical cells as described in Figure 2.
3.3 Electrochemical Stability

The fully loaded polymers can be discharged by switching the cell polarity so the
inverse of reaction (3) takes place. A very desirable feature of an electrochemical cell
used for desalination is long term cyclability. Figure 3 shows the dependence of the ion
exchange capacity on continuous electrochemical cycling in 0.10 M NacCl solutions as
monitored by potentiometry with Cl-and Na* ion selective electrodes.
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Figure 3. Jon exchange capacity (expressed as miliequivalents of chloride ion exchanged) of desalination
cells as a function of electrochemical cycles. Initial concentration of NaCl: 0.11 M. Experiments at 25° C under
an Ar blanket.

For the first five cycles, the system exchanges about 1.9 meq Cl per g of dry PPy.
After that, the ion exchange capacity decreases by nearly 50 % in another seven cycles.
This is not necessarily surprising and it can be adscribed to degradation of the PPy based
films by both generation of chlorine gas and overoxidation of PPy which is relatively
unstable in air. Overoxidation of conducting polymers is known to cause interruption of
the backbone conjugation by formation of hydroxyl and carbonyl groups, resulting in loss
of electroactivity %2V,
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Because of the low reusability of the PPy films, more stable polymers will have to
be used in future studies. In principle, polyfuran (PF) and polythiophene (PT) derivatives
might be attractive because they show electroactivity at higher potentials than that of PPy,
and, therefore, they are more stable to degradation by oxygen and water. However, the
electroactivity of PF and PT is poor in aqueous media because these polymers are more
hydrophobic than PPy. Instead, copolymers of pyrrole, furan, and thiophene derivatives,
for instance, alkylfurans and alkylthiophenes, might offer a better choice providing the
resulting copolymers combine the hydrophilicity of PPy and the stability of PF and PT.

4 Conclusions

The electrochemical cell made from a PPy anode and a PPy/PSS cathode described in
this work can substantially decrease the concentration of NaCl solution in the 10" and 10
M regime. The ion exchange capacities of the films in this cell are comparable to those of
commercially available ion exchange resins. However, the electrochemical cyclability of
the cell is poor because the PPy based films overoxidize. Copolymer films made from Py,
furan, and thiophene derivatives may help to improve the long term stability of the cell.
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