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Abstract

In the present paper we introduce a new hierarchy, each equation of which is defined

by several brackets of two pseudodifferential operators. We deal with some algebraic

properties of these equations. In particular, we show that, as in the classic case, they

are related to the presence of an infinite sequence of first integrals. A new version of

the Zakharov-Shabat type equations is proved. Formal solutions of this hierarchy are

constructed using a “several brackets bilinear identity”.

1 Introduction

Recently, great progress has been made in the construction of integrable
systems. It has been found that integrable systems usually admit a natural
extension by odd variables, and multi-dimensional and integral generalizations
of soliton equation have been considered. In this paper we will concentrate on
another form of construction of these systems: equations of Lax type with several
brackets.

Equations with several brackets arose originally in the work of Brockett [2],
[3], for ordinary differential equations, and then in Felipe [6] for partial differential
equations of Lax type with double brackets (see [7] for the super Brockett equations
type).

The study of flows of the form

∂L

∂t
= [L, [L,N ]] (1)

on Lie algebras of finite dimension (that is for ordinary differential equations) was
first made by R. W. Brockett (see [2] and [3]), who observed that this type of
equations are interesting because of their relation with problems of counting and
combinatorial optimization. In the case of the Toda lattices, we obtain an integral
Hamiltonian system that is also a gradient flow. Also R. W. Brockett, A. Bolch
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and T. S. Ratiu (see [1]) introduced a continuous analog of Toda Lattices (partial
differential equations) that can be written as (1) and showed, in addition, that
this equation has a set of functional invariants or conserved quantities.

More recently Felipe (see [6]) introduced a hierarchy on the Lie algebra of
pseudodifferential operators (the so-called hierarchy of Brockett) of the following
form:

∂L

∂t
=

[
L,

[
L, (Ln)+

]]
, n = 1, 2, 3, . . . . (2)

Remarkably, this hierarchy shares many properties of its finite dimensional counter
part, and one of our goals is to extend this study to hierarchies defined by more
brackets.

As yet another generalization, we investigate here equations of the form:

∂L

∂t
= [L, [L, · · · [L,P ] · · · ]︸ ︷︷ ︸

m−times

(3)

where L, P : R+ → g and g is a Lie algebra. We will show that the algebraic
situation is the same as the usual KP system studied in [5], [9] and [10] (See [11]
for the super KP equation). In particular, that a construction of Adler gives, in
this context, invariant functions.

As is well known, the definition of complete integrability in the infinite
dimensional case is more subtle than in the finite dimensional one. The one we
will use here is the existence of an infinite number of conserved quantities.

This paper is organized as follows. In section 2 we generalize the usual KP

framework to the case of several brackets. Then, in section 3 we show that as
in the classical case the equations (3) are related to the presence of an infinite
sequence of first integrals. Section 4 exhibits some new integral systems. Finally,
in section 5 we will emphasize the role of the Baker-Akhiezer function and one of
our results will be a “several brackets bilinear identity”.

2 Notations and Preliminary Results

In this section we give a brief introduction to pseudodifferential operators.
Ordinary differential operators can be written as

P = p0∂
n + p1∂

n−1 + · · ·+ pn

where the coefficients pi are supposed to lie in some differential algebra over C

of smooth functions of x, for example C [[x]], and ∂ = d
dx
. A pseudodifferential

operator is a formal series of the form:

R =

n∑
−∞

ri(x)∂
i, n ∈ N, (4)

2    Notations and Preliminary Results
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where the operator ∂i, i ∈ Z, acts according to the rules (see e.g. [5])

∂if = f∂i +

(
i

1

)
f ′∂i−1 + · · · ,

(
i

j

)
=

i (i− 1) · · · (i− j + 1)

j!
.

Notice that the above equation is a generalization of the well-known Leibniz
rule.

We introduce the product of two operators of the form (4). First we define

∂n · ∂m = ∂n+m, ∂0 = 1 (n,m ∈ Z).

It is easy to see that

∂−1r =
∞∑
j=0

(−1)jr(j)∂−(j+1)

where r(j) = ∂jr
∂xj (see e.g. [5]).

It is easy to check that this makes the set of all pseudodifferential operators
an associative algebra, which we denote by ΨDO. If R =

∑
ri∂

i is a
pseudodifferential operator, we will write R+ for the differential operator part,
R+ =

∑
i≥0 ri∂

i, and R− =
∑

i<0 ri∂
i.

Thus R = R+ +R−. An element R ∈ ΨDO has order n if

R =
n∑
−∞

ri∂
i

and rn �= 0. We denote ord(R) = n. If ord(R) = n and rn = 1, R is called a
monic operator. Let E(n) be the set of all elements in ΨDO of order at most n.
Then, we have formally a direct sum decomposition

ΨDO = DO ⊕ E(−1)

where DO is the set of all differential operators (R = R+ if R ∈ DO [R1, R2] =
R1R2 −R2R1.

We choose a subset of ΨDO whose elements Φ can be expressed by:

Φ = 1 + u−1∂
−1 + u−2∂

−2 + · · · .

The operators belonging to this set are invertible and forms a group, denoted
by (ΨDO)

�
.

Equations of Lax type
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We call a first order monic operator of the form:

L = ∂ + u−1∂
−1 + u−2∂

−2 + · · ·

a Lax operator (u−n = u−n(x, t)). We set Ln = Ln−1 · L. Then,

Ln = ∂n + qn−2∂
n−2 + qn−3∂

n−3 + · · · .

We recall that if R =
∑

ri∂
i ∈ ΨDO , then, ∂R

∂t
=

∑
∂ri
∂t

∂i.

Let L be a Lax operator. An equation of Lax type with m brackets, formed
from L is an equation of the form:

∂L

∂t
= [L, [L, · · · [L,P ] · · · ]]︸ ︷︷ ︸

m−times

(5)

where P ∈ DO. In the rest of this paper we use the following notation of Mulase:

R · [, Q]
m

= [R, [R, · · · [R,Q] · · · ]]︸ ︷︷ ︸
m−times

Namely, R · [, Q] = [R,Q], R · [, Q]
2
= [R, [R,Q]] etc.

The possible operators P in (5) must satisfy the requirement that L · [, P ]
m

∈

E(−1). Hence, such a pair (P,L), where P ∈ DO and L is a Lax operator will be
called admissible. If L is a Lax operator, then, as in the classical case, for n ∈ N,(
(Ln)+ , L

)
is an admissible pair.

Lemma 1. Let L be a Lax operator, P ∈ DO such that [L,P ] ∈ E(−1). Then,
P is a linear combination of the (Ln)+, n = 0, 1, . . ., with coefficients in C and
(P,L) is an admissible pair.

Proof. This Lemma follows directly from the Lemma 3.1 of [9].

It should be noted that the condition [L,P ] ∈ E(−1) for P ∈ DO implies that
the highest order coefficient of P is a constant. On the other hand, if (P,L) is an
admissible pair, then, the highest order coefficient of P is a polynomial of the form
(am−1x

m−1 + am−2x
m−2 + · · ·+ a1x+ a0), where the ai are complex numbers for

i = 0, 1, · · ·m− 1.

Lemma 2. Let L be a Lax operator, and (P,L) be an admissible pair such that
the top order coefficient (am−1x

m−1 + am−2x
m−2 + · · · + a1x + a0) of P is not

constant, then, if ord(P ) = n, P can be written in the following form

P = (am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0)(L
n)+ +

n−1∑
k=0

rk(L
k)+ (6)

where rk ∈ C[[x]] for every k.

R. Felipe and R. Velásquez 
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Proof. Suppose that the Lemma is true for all admissible P ∈ DO of order less
than n, such that the highest order coefficient is not constant. Let us take an
admissible pair (P,L), such that, ord(P ) = n and with the same property. Let
(am−1x

m−1 + am−2x
m−2 + · · · + a1x + a0) be the highest order coefficient of P ,

then, we define:

Ln
(am−1,··· ,a0)

= (am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0)(L
n)+ +

n−1∑
k=0

qk(L
k)+

where the coefficients qk are formal power series that are obtained by imposing
the condition that ((P − Ln

(am−1,··· ,a0)
), L) is an admissible pair. To eliminate

the coefficient of ∂n−1 in L · [, (P − Ln
(am−1,··· ,a0)

)]m we can take qn−1 = pn−1 +

(bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x+ b0), where pn−1 is the coefficient of ∂n−1 in
P (because ∂ ·

[
, (bm−1x

m−1 + · · ·+ b1x+ b0)
]m

= 0). Notice that we may assume
that bm−1 �= 0 or bm−2 �= 0. Now, the equation equivalent to the annihilation of ∂k

for k = 0, 1, . . . , n− 2 in L · [, (P −Ln
(am−1,...,a0)

)]m only contains qk, qk+1, . . . , qn−1

and their derivatives, and it is of the form q
(m)

k = Qk(qk+1, . . . , qn−1), where Qk

is a differential polynomial in qk+1, . . . , qn−1 with coefficients in C[[x]]. This fact
allows us to calculate qn−2, qn−1, · · · , q0 recursively.

Since, ord(P − Ln
(am−1,...,a0)

) < n and the top order coefficient of P −

Ln
(am−1,...,a0)

is not constant, we have:

P − Ln
(am−1,...,a0)

= (bm−1x
m−1 + · · ·+ b1x+ b0)(L

n−1)+ +
n−2∑
k=0

tk(L
k)+

where tk ∈ C[[x]]. Therefore, P can be represented as a C[[x]]-linear combination
of (Lk)+’s, which coincides with (6).

Definition 1. Let L be a Lax operator, then, the following system of infinitely
many equations of Lax type with m brackets is called the m-brackets hierarchy

∂L

∂tn
= L ·

[
, (Ln)+

]m
. (7)

We assume that the coefficients of L in (7) are functions dependent on some
additional variables t1, t2, t3, . . . , tn, . . .. We remark that L = ∂ is a trivial solution
of (7).

Note that equation (7) can be interpreted as the compatibility condition for
the following system of equations:

LΦ = Φ∂,

∂Φ

∂tn
= L ·

[
, (Ln)−

]m−1
Φ.

for a formal (ΨDO)�-function Φ (x, t1, t2, . . .).

Equations of Lax type
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In many cases it is possible and convenient to represent the Lax operator
L in a formal dressing form L = Φ∂Φ−1, where Φ ∈ (ΨDO)� is determined
up to multiplication on the right by a series in ∂−1 with constant coefficients
(independents of x, but can be depend about the time variables t1, t2, . . . .) starting
with 1. In terms of Φ, the equations of the m-brackets hierarchy are:

∂Φ

∂tn
= L ·

[
, (Ln)−

]m−1
Φ. (8)

In fact, let Φ be a solution of (8), where L = Φ∂Φ−1then L is a Lax operator
that satisfies (7). To see this, notice that from (8) we immediately obtain the
equation

∂Φ−1

∂tn
= −Φ−1

(
L ·

[
, (Ln)−

]m−1
)
. (9)

Now,
∂L

∂tn
=

∂Φ

∂tn
∂Φ−1 +Φ∂

∂Φ−1

∂tn
. (10)

If we replace ∂Φ
∂tn

and ∂Φ−1

∂tn
in (10) by the right hand side of (8) and (9)

respectively, we have:

∂L

∂tn
=

(
L ·

[
, (Ln)−

]m−1
)
Φ∂Φ−1 − Φ∂Φ−1

(
L ·

[
, (Ln)−

]m−1
)

= −L ·
[
, (Ln)−

]m
= L ·

[
, (Ln)+

]m
.

Now we can prove the following lemma:

Lemma 3. Let L = Φ∂Φ−1, where Φ ∈ (ΨDO)�, then, (n,m ≥ 1)

L ·
[
, Ln
−

]m−1
Φ = Φ

(
∂ ·

[
,Φ−1Ln

−Φ
]m−1

)
. (11)

Proof. We will prove it by induction. First we prove the formula:

L ·
[
, Ln
−

]
Φ = Φ

(
∂ ·

[
,Φ−1Ln

−Φ
])

.

In fact,

L ·
[
, Ln
−

]
Φ =

[
L,Ln

−

]
Φ

=
(
Φ∂Φ−1Ln

− − Ln
−Φ∂Φ

−1
)
Φ

= Φ
(
∂Φ−1Ln

−Φ− Φ−1Ln
−Φ∂

)
= Φ

[
∂,Φ−1Ln

−Φ
]

= Φ
(
∂ ·

[
,Φ−1Ln

−Φ
])

.

R. Felipe and R. Velásquez 
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Thus, the equality (11) holds. Let (11) be true for m = k, then,(
L ·

[
, Ln
−

](k+1)−1
)
Φ =

{
L
(
L ·

[
, Ln
−

]k−1
)
−
(
L ·

[
, Ln
−

]k−1
)
L
}
Φ

=
{
Φ∂Φ−1

((
L ·

[
, Ln
−

]k−1
)
Φ
)

−
((

L ·
[
, Ln
−

]k−1
)
Φ
)
∂
}

= Φ∂Φ−1
(
Φ
(
∂ ·

[
,Φ−1Ln

−Φ
]k−1

))
−Φ

(
∂ ·

[
,Φ−1Ln

−Φ
]k−1

)
∂

= Φ
{
∂
(
∂ ·

[
,Φ−1Ln

−Φ
]k−1

)
−
(
∂ ·

[
,Φ−1Ln

−Φ
]k−1

)
∂
}

= Φ
(
∂ ·

[
,Φ−1Ln

−Φ
]k)

.

Lemma 4. The operator

Zc = ∂ ·

[
,−

(
Hc

0 +Φ−1
0

∂Φ0

∂tn

)]m−1

− Φ−1
0

∂Φ0

∂tn

where

Hc
0 = Φ−1

0

(
−Ln

−

)
Φ0 − Φ−1

0

∂Φ0

∂tn
and L = Φ−1

0 ∂Φ0

has only constant coefficients.

Proof. Lemma 4 shows that

[∂, Zc] =

[
∂, ∂ ·

[
,Φ−1

0

(
Ln
−

)
Φ0

]m−1
− Φ−1

0

∂Φ0

∂tn

]
=

[
∂,Φ−1

0

(
L ·

[
,
(
Ln
−

)]m−1
)
Φ0 − Φ−1

0

∂Φ0

∂tn

]
= −Φ−1

0

(
L ·

[
,−

(
Ln
−

)]m)
Φ0 − Φ−1

0

[
L,

∂Φ0

∂tn
Φ−1

0

]
Φ0

= Φ−1
0

(
−
(
L ·

[
,
(
Ln
+

)]m)
+

[
∂Φ0

∂tn
Φ−1

0 , L

])
Φ0

= Φ−1
0

(
−

∂L

∂tn
+

∂L

∂tn

)
Φ0

= 0.

Theorem 1. Let L be a Lax operator such that L satisfies equation (7) for n fixed,
then, there is an operator Φ ∈ (ΨDO)�, where L = Φ∂Φ−1, satisfying the equation
(8) for this n.

Equations of Lax type



108

Revista de Ciencias  

Proof. Suppose L satisfies the equation (7). Let Φ0 ∈ ()� be an operator such that
L = Φ0∂Φ

−1
0 , then, from the Lemma 5, there is a constant element C ∈ (ΨDO)�

(See e.g. [12]) such that

∂ ·

[
,−

(
Hc

0 +Φ−1
0

∂Φ0

∂tn

)]m−1

− Φ−1
0

∂Φ0

∂tn
=

∂C

∂tn
C−1.

Hence

(Φ0C)
−1

(
L ·

[
,
(
Ln
−

)]m−1
−

∂ (Φ0C)

∂tn
(Φ0C)

−1

)
(Φ0C)

= C−1

(
∂ ·

[
,−

(
Hc

0 +Φ−1
0

∂Φ0

∂tn

)]m−1

− Φ−1
0

∂Φ0

∂tn
−

∂C

∂tn
C−1

)
C

= 0.

Let Φ = Φ0C. Note that Φ∂Φ−1 = (Φ0C) ∂ (Φ0C)
−1

= Φ0∂Φ
−1
0 = L. Thus,

we have found an operator Φ ∈ (ΨDO)�satisfying equation (8).

3 Invariant Polynomial Functions

In this section we will work with pseudodifferential operators (4). A
conservation law is an identity

∂H

∂t
=

∂J

∂x

that follows formally from (5). The conserved density H and flux J are differential

polynomials in u−1, u−2, u−3, . . . and their x-derivatives u
(k)
−n. An invariant

polynomial functional for (5) is a function of the form:

F (H) =

∫ 1

0

H dx

where H is a conserved density. Notice that if F is an invariant polynomial
function, then, ∂F

∂t
= 0.

For R ∈ ΨDO we define the residue as:

resR = r−1.

Next, we shall also use the Adler function

Tr R =

∫ 1

0

resR dx.

This functional has the property Tr [R1, R2] = 0, for every R1, R2 ∈ ΨDO

(see the proof of Theorem 8).

Lemma 5. For any k ≥ 2, by virtue of the equations (7), then,

∂Lk

∂tn
=

[
Lk,

(
L ·

[
, (Ln)+

]m−1
)]

holds.

3    Invariant Polynomial Functions
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Proof. Let k = 2, then,

∂L2

∂tn
=

∂L

∂tn
L+ L

∂L

∂tn

=
(
L ·

[
, (Ln)+

]m)
L+ L

(
L ·

[
, (Ln)+

]m)
=

(
L
(
L ·

[
, (Ln)+

]m−1
)
−

(
L ·

[
, (Ln)+

]m−1
)
L
)
L

+L
(
L
(
L ·

[
, (Ln)+

]m−1
)
−

(
L ·

[
, (Ln)+

]m−1
)
L
)

= L2
(
L ·

[
, (Ln)+

]m−1
)
−

(
L ·

[
, (Ln)+

]m−1
)
L2

=
[
L2,

(
L ·

[
, (Ln)+

]m−1
)]

.

Now, we suppose that the lemma is true for k = r, i.e.

∂Lr

∂tn
=

[
Lr,

(
L ·

[
, (Ln)+

]m−1
)]

.

We have:

∂Lr+1

∂tn
=

∂Lr

∂tn
L+ Lr ∂L

∂tn

=
[
Lr,

(
L ·

[
, (Ln)+

]m−1
)]

L+ Lr
(
L ·

[
, (Ln)+

]m)
=

(
Lr

(
L ·

[
, (Ln)+

]m−1
)
−
(
L ·

[
, (Ln)+

]m−1
)
Lr

)
L

+Lr
(
L
(
L ·

[
, (Ln)+

]m−1
)
−

(
L ·

[
, (Ln)+

]m−1
)
L
)

= Lr+1
(
L ·

[
, (Ln)+

]m−1
)
−
(
L ·

[
, (Ln)+

]m−1
)
Lr+1

=
[
Lr+1,

(
L ·

[
, (Ln)+

]m−1
)]

.

Theorem 2. The polynomial functionals

Fk = Tr Lk =

∫ 1

0

resLk dx k = 1, 2, 3, · · ·

are invariant polynomial functionals.

Proof. It is well know that res [R1, R2] = ∂h (see e.g. [5]), where h is a differential
polynomial in the coefficients of R1 and R2, R1, R2 ∈ ΨDO. Hence

∂

∂tn
(resLk) = res

∂Lk

∂tn
= res

[
Lk,

(
L ·

[
, (Ln)+

]m−1
)]

=
∂Jk

∂x

where Jk are differential polynomials in u−n, n = 1, 2, 3, . . .; and their x-derivatives

u
(i)
−n, i, n = 1, 2, 3, . . ..

Equations of Lax type
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4 Zakharov-Shabat Type Equations and Some New Integral Systems

The purpose of this section is to show how the system (7) generates new zero-
curvature type equations.

Theorem 3. Let Bq = (Lq)+, q ≥ 1. Equations (7) imply that:

∂Bn

∂ts
−

∂Bs

∂tn
=

(
L · [, [Bn, Bs]]

m−1
)
+
. (12)

Further, every equation given by (12) is equivalent to a finite system of
equations, the number of equations being equal to the number of unknown
quantities, i.e. is equivalent to a closed system of partial differential equations.

Proof. It is easy to see that if q ≥ 1, then,[
Lq,

(
L ·

[
, (Ln)+

]m−1
)]

= L ·
[
,
[
Lq, (Ln)+

]]m−1
. (13)

In fact, for B ∈ ΨDO we have:

Lq · [, [L,B]] = L · [, [Lq, B]] ,

(See [6] for more details). Now, this result implies (13).

¿From (13), and according to lemma 7,

∂Bn

∂ts
−

∂Bs

∂tn
=

(
L ·

[
,
[
Ln, (Ls)+

]]m−1
)
+
−
(
L ·

[
,
[
Ls, (Ln)+

]]m−1
)
+

=
(
L · [, [Ln, Bs]− [Ls, Bn]]

m−1
)
+

=
(
L · [, [Bn, Bs]]

m−1
)
+
−
(
L ·

[
,
[
(Ln)− , (Ls)−

]]m−1
)
+

=
(
L · [, [Bn, Bs]]

m−1
)
+
.

5 The Baker-Akhiezer Function

The main purpose of this section is to prove a bilinear identity with several
brackets for the Baker-Akhiezer and the ad joint Baker-Akhiezer functions (the
proof of the bilinear identities is essentially the same as in [6]); they will play a
crucial role in obtaining “formal solutions” of the hierarchy (7).

A formal eigen functionW of L with eigenvalue z, the so-called Baker-Akhiezer
function, is very important in this theory (See [4]). For a solution

L = ∂ +R−1∂
−1 + · · ·

to the m−bracket hierarchy (8), we have, in terms of the dressing operator
Φ ∈ (ΨDO)

∗
, the associated Baker-Akhiezer function:

W = Φexp ξ
(
x, t̃, z

)

4    Zakharov - Shabat Type Equations and Some New Integral Systems

5    The Baker - Akhiezer Function
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(Recall that L = Φ∂Φ−1) where ξ
(
x, t̃, z

)
= xz +

(∑∞

k=1 tkz
k
)
, satisfying the

equations:

LW = zW ,
∂W

∂tn
=

(
L ·

[
, Ln
−

]m−1
)
W + znW .

The second equation yields:

τnW = BnW (14)

where τn = ∂
∂tn

−
(
L ·

[
, Ln
−

]m−1
)
− Ln

− . Also, the equation (18) can be written

in the following form:
τnΦ = −Ln

−Φ (15)

The ad joint Baker-Akhiezer function is:

W a = (Φ∗)
−1

exp
(
−ξ

(
x, t̃, z

))
where the star means the conjugation, i.e. if X =

∑
pi∂

i, then, X∗ =
∑

(−∂)
i
p∗i

where p∗i is the transpose of pi.

Proposition 1. Suppose we have a solution L of (7) and L = Φ∂Φ−1. Then, the
following “double bracket bilinear identity”

resz
(
∂iτ jnW

)
· (W a) = 0

holds for any (i, j, n) and i ≥ 0, j = 0, 1 and n ≥ 1, where τ0n = id. Here W and
W a are the Baker-Akhiezer and ad joint Baker-Akhiezer function respectively.

The notation resz means the coefficient of z−1. The notation res∂ means the
coefficient of ∂−1.

Proof. Since τnW = BnW , it is sufficient to prove this equality for j = 0 and
i ≥ 0, but in this case the proof is well known (see e.g. [5]) and therefore, it is
omitted.

It is worth mentioning that if there are two expressions

ψ =

∞∑
i=0

ψi

(
x, t̃, z

)
z−ieξ(x,t̃,z) , ψa =

∞∑
i=0

ψa
i

(
x, t̃, z

)
z−ie−ξ(x,t̃,z) (16)

with ψ0 = 1, ψa
0 = 1, such that

resz
(
∂iψ

)
· (ψa) = 0, i = 0, 1, 2, · · ·

then, letting Φ =
∑∞

i=0 ψi∂
−i we will have ψ = W = Φexp ξ

(
x, t̃, z

)
and

ψa = W a = (Φ∗)
−1

exp
(
−ξ

(
x, t̃, z

))
.

Now, we formulate the converse of proposition 10.
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Proposition 2. If for the expressions (20) with ψ0 = 1, ψa
0 = 1 we have

resz
(
∂iτ jnψ

)
· (ψa) = 0, i, j = 0, 1, 2, · · ·

Then, an operator L = ∂ +R−1∂
−1 + · · · can be constructed such that L satisfies

(7).

Proof. Let Φ =
∑∞

i=0 ψi∂
−i and L = Φ∂Φ−1, then,

(
τnΦ+ Ln

−Φ
)
eξ(t̃,z) =

(
∂Φ

∂tn
−
(
L ·

[
, Ln
−

]m−1
)
Φ

)
eξ(x,t̃,z)

=

(
∂Φ

∂tn
−
(
L ·

[
, Ln
−

]m−1
)
Φ

)
eξ(x,t̃,z)

+Φ
∂eξ(x,t̃,z)

∂tn
− Φ

∂eξ(x,t̃,z)

∂tn

=

(
∂Φeξ(x,t̃,z)

∂tn
− Φzneξ(x,t̃,z)

−
(
L ·

[
, Ln
−

]m−1
)
Φeξ(x,t̃,z)

)
=

(
∂Φeξ(x,t̃,z)

∂tn
− Φ∂neξ(x,t̃,z)

−
(
L ·

[
, Ln
−

]m−1
)
Φeξ(x,t̃,z)

)
=

(
∂

∂tn
− Ln −

(
L ·

[
, Ln
−

]m−1
))

Φeξ(x,t̃,z)

= (τn −Bn) Φe
ξ(x,t̃,z).

Now, according to the assumption

0 = resz

(
∂i (τn −Bn) Φe

ξ(x,t̃,z) ·
(
(Φ∗)

−1
e−ξ(x,t̃,z)

))
= resz

(
∂i

(
τnΦ+ Ln

−Φ
)
eξ(x,t̃,z) ·

(
(Φ∗)

−1
e−ξ(x,t̃,z)

))
= res∂

(
∂i

(
τnΦ+ Ln

−Φ
)
· Φ−1

)
for i = 0, 1, 2, · · · , and this gives that(

τnΦ+ Ln
−Φ

)
· Φ−1 = 0.

Hence, (
τnΦ+ Ln

−Φ
)
= 0.

6 Open Problems

A problem for further work is to find solutions of the hierarchies using the Tau
functions (see e.g. [5]) which must exist according to the results obtained. The
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problem is to find what forms the Tau functions can have. For example, for the
equations of the Brockett hierarchy one step to follow is to study the Tau function
for the first equation of the hierarchy; i.e., find its expression in Hirota form and
then calculate the explicit form of the Tau function. Furthermore, one should
be able to show that similar results exist for all the hierarchy. For the existence
of the Tau function, we can assume that all these hierarchies are constituted by
commutative laws. In this paper we have not shown this commutability. However,
good results can be obtained by showing commutability in the general case.

A very interesting problem arises here, namely to try to extend the approach
of Mulase for the hierarchy KP to the hierarchies with several brackets; we do not
know what results of factorization for pseudo differentials operators are lacking.
In order to attack this problem one has to start with the study of the Brockett
hierarchy, and in this case it consists of linearizing the hierarchy using theorems
of factorization of the Birkhoff type for groups of Loops. This problem apparently
is very difficult.

Another topic of investigation that could be followed is to study discrete
hierarchies of equations of Lax type with several brackets using the shift matrix.
This subjectmust have connection, as in the case of the discreetKP , withmatrices
of moments and orthogonal polynomials. Here, one can also consider to extend
the method of Mulase in this context, as done by Felipe and Ongay (see [8]) for
the discrete KP .
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