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Abstract

Cone beam reconatruction is a three-dimensional tomographic reconstruc-
tion technique with the potential capability of producing images with temporal
contrast, and tluee-dimensional spatial resolution.

In this paper we present a rigorous proof of the novel three-dimensional in-
version formula developed by B. Smith and derive strict upper bounds for the

crror.

1. Introduction

Cone-Beam reconstruction is a three-dimensional tomographic technique
with the potential capability of producing images with improved temporal
and three-dimensional spatial resolution. In the past, very few inversion
formulas were known and it was not clear what type of data collection ge-
ometries would produce enough information so that a “practical” inversion
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formula would be possible. See Marr [7], Louis and Natterer [5], and the ref
erences therein. Lately, however, several reconstruction methods and data
collection geometries, which will significantly increase the attractiveness
of implementing cone-beam tomography in both medical and non medical
applications, have been derived formally. See Feldkamp et al [1], Finch (2]
and Grangeat [3].

In this paper we concentrate onr attention on one of such new formulas ini-
tially proposed by B.K.P. Horn [4] for arbitrary two-dimensional raysam-
pling schemes and more recently extended to three dimensions hy B. Smith
[10], [11], and attempt to enhance its mathematical foundation. We hope
that making the formal derivations rigorous will increase the acceptance of
this work by other researchers, and at the same time, lay a solid background
for further advances in the present theory ol cone-beam recoustructions as
well as in the analysis of many numerical and computational related ques-
tions.

The paper is organized as follows: In Section 2, the mathematical founda-
tion of the new three—dimensional Radon oinversion lormula is investigated
assuming Lhe existence (and availability) of a complete set of projection
data. Recognizing that the reconstruction by computerized tomography
procedure is inherently an ill- posed problem in the sense that small errors
in the projection data might cause large errors in the computed density
function- it becomes necessary to stabilize the inverse problem. This task
is addressed in Section 3 where we also present new rigorous upper bounds
for the error as a function of the regularizing parameters and a theoretical
proof of convergence.

2. Mathematical Foundation of the New Three—
dimensional Radon Inversion Formula

In this section we shall consider the three-dimensional Radon Transform
f = Rf of density functions f:IR* — IR, defined by

fil,8) = / T FUIB + By + thy)ds dt

where 3, 3; and 3, form a set of orthonormal three dimensional vectors.
This formula corresponds to integration over the plane spanned hy the
vectors @) and gz, perpendicular to the 3 direction aud passing through
the point {3, —oc < [ < ac. See Smith [11} for details.

[t is well known (see Ludwig [6]}, that the three-dimensional Radon Inver-
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sion Formula is given by

1
@=-53 [, O FU.8)ime 8. (1)

W;e observe that the inversion formula corresponds to the integration of
d
an
Formula (1) also shows that the ill-posedness of the three-dimensional re-
construction procedure is related with the fact that the data f has to be
partially differentiated twice. In the presence of noise in the data, the nu-
merical differentiation algorithm must be regularized to restore stability
with respect to the data. (See for example Murio [8]).

f(I,/3) over all the planes passing through a given reconstruction point.

In order to establish a new inversion formula more suitable for numerical

computation the main result in this section— we shall require the continuity
o! d*

of Olf (1,8). Notice that the continuity of — 30 f(l A) is sufficient for the

existence of the reconstructed density function f(z) according to formula

(1).

We also assume that all the l'um:tumq involved, and their derivatives, de-

In this setting we always consider the functions with compact support al-
ready extended (smoothly) to the entire space so that the previous assump-
tions are satisfied.

crease at infinity more rapidly that —

In what follows we shall also use the one-dimensional Fourier transform of
a function f(t), defined by

. 1 /oo
1) = t)e "dt —00 < W <00,
J@i= o= [ :
and the corresponding inverse Fourier transform given by

f(*)_' / flwe ™™dw , 00 <t < oo

-_—

The Hilbert Transform of a function ¢ : IR — IR will play an interesting
role in the sequel. This singular integral transform is defined by

1 , o
(o)) = —pV [ o e
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The integral is understood in the sense of the Cauchy principal value and
has meaning for functions g(t), defined for —o0 < [ < o and tending to

zero together with its continuous first derivative not more slowly than m]
as |t| — oc.

Now, we are ready for the introduction of the important function

F(,B) = ('H%{) (1, 4)

(2)
S
ol /_m_l-t_at (At

where the Hilbert transform is understood with respect to the first variable.
The function F(I,3) (see Smith [11]) is fundamental for the development
of the new three-dimensional Radon inversion formula as well as for the
consistency and stability of the method. To obtain a different expression
for F(1,8), we shall work in a slightly different way.

Lemma 1. Let g : IR — IR be such that ¢'(t) and ¢”(t) are continuous
and vanish at infinity together with ¢(t) faster than lti; then
(e = = tim [ B - gttt

where
1/a? |, |s| <o,
Hy(s) = (3)
-1/s%, |s| 2 a.

Proof. Let
. 1 e ] .
G = (g = —pv [~ — gt (1)
1l' —_ — f
After an integration by parts in equation (4), we have

I P 1"
Gl = - /_ ¢"(t) log i — t]dt . (5)

X%

A dilterent integration by parts in equation (1) produces
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ki 7. 1
Gy = = ‘1112:] [;(g(l —a)+g(l - a))
(6)

l—o 1 _ o 1
_/_w T g(t)dt—[l+a o g(t)dt] :

Using Taylor expansions we obtain

1 2
;[g(l a)t gl ta)] = — 17(’) + "[qn(fl)"' q"(&))
I o< <lct<l+a,
and
1 I+
o e = Zau)+ Sene + g6
o<l l+a.
Thus,
1 ; 1 4o ;
Slot-aytgtral-— [T gt =), (1)

4
where 0(a) < qtu"“«x, and

1 {4or

— lim [—lq(t—a)+g(l+n)]— B

S i !

g[t)dz] =0 (8)

Subtracting equation (%) from equation (6) we get

i 1 1 i+o {—a 1
(1) = ;Ol,'_l!}; ~ /_a y(!)dl.—ji% (l——t)‘ q(t)dt

_/:: (7_17)—: !](l)dt} ,

and using the definition of the kernel /1. given by equation (3). we complete
the proof.

Remarks.

L. The kernel function H, was introduced by Horn, (See Horn [4]) for
general two dimensional fan -beam reconstruction algorithms.
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2. Applying Lemma 1, with g(¢) = f(,8) and 3 fixed, we get
. ool 00 _ a3
F(LA) = - lim _/_oo Ho (1 - t)f(t,B)dt . (9)

Our next task is to show that the three dimensional Radon inversion
formula can also be written as

f(2)= o5 s im, [ otz B -0F@sds . (10)

We begin by finding a useful expression for the one-dimensional
Fourier transform of F(I,3) as a lunction of its first variable.

Lemma 2. (Ludwing [6], pp.52) Let g : IR~ IR be such that ¢'(t) is

continuous and vanishes at infinity together with g(t) faster than LY then

l2|’
[9(w) sgn w]'(1) = i(Hg)(1), —00 <t < o0,
where (f)V(t) = f(t) and i = /1.

For completeness, Ludwig’s proofl is reproduced in the Appendix, following
Section 3.

The main result of this section is now stated in the following

;10
Theorem 1. If 81{“ ) is continuous, 50 f(l 3), :=0,1,2,3,4 and

AL 1
P07 ({,3), j=0,1,2 vanish at infinity faster than —, then the density

|l
function f(x) can be written as

flz) = §ﬁ Adll lim /_\ Ho(x-8-0)F(,3)dt dj .

=1 «'=0

Proof. By Lemma 2, with g(!) = 3_ (,A)and l =2z -3,

—. v
3 () ) .
( T ) (.8 = [(bl (w,3)(—1 sgn uJ)] ({,3)

; v
li...*F(a.‘;,.»'})(—z sgn u)] ({.3),

and

(1) ) = fobtw.8) son o] (1) (1)
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x . . oA BB i
Notice that this formula requires the continuity of il which in turn re-
.7

i according to the definition of Ililbert trans-

form, given by equation (2). Since F(l,3) = ( 3f) (1,8), using Lemma

quires the continuity of —=

2 again,
v

F(l,8) = [ﬂ (w,B)(—=1 sgn w)| (1,8).

Applying Fourier transform,
F(w,8) = [,,,—, (w,8)(~ sgn w)]
and replacing this in equation (11), we get

(nGr)wm = |- ﬁ)] (1.5)

'af | |
- |57 (w,m} (1,3)

=

and

aF *f .
(%5r) 4o =-57 W) (12)

On the other hand, recalling that | = z - 3,

1 aF
( ) lﬁ_-m /wrﬁ_t AR

By Lemma 1, with ¢(!) = F({,), we get
oF |
( a‘) (1.3) = <X, lun / Hylz -3 —t)F(t,4)dt . (13)

and from equations (12) and (13) we obtain

3i{ (,B)= - l!lllu [_o; Ho(z -8 - U)F(t,3)dt . (14)
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Finally, replacing equation (14) in equation (1), we obtain the new inversion
formula.

3. Stability Analysis

The purpose of this section is to define and analyze a stable method for the
three-dimensional reconstruction procedure based on the inversion formu-
las of Section 2, given by

1 - 00
[0 = 5 4 iin f_m Ho(z-8 - OF(l,8)dl d3 ,

fll=1 =0

and

p(:,;x):}r- lim /_°° Ha(l - t)f(1, 8)dt

when the data is not known exactly. Our method consists of eliminating
the limit procedure —regularizalion by truncation in the formulas above,
i.e., we define

1 [ V]
foay=gz [ 7 Hatwp -0 R@gads,  (5)
87 Jp=1 S o
and
1 - s
Fa(l ) = / Ho(l— 1) f(t.3)dt . (16)

The following two Lemmas are fundamental for our analysis.

Lemma 3. (Consistency). Let g : IR — IR with ¢”({}) continnons and such

that ¢, i = 0,1,2, vanish al infinity faster than —1— If G(l) -~ (Ug')!)

lt]
and
| e
Goll) = = / GUOHs(L )t 0 <6< 1, (17)
then
&M 10
s~ Gl < " [tl1og o+ 2] | (18)

where ||¢/]l<x < M.
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Proof. By the definition of the kernel Il in equation (3), we get

. 0 o =]
(;5“) = 1—r [é—J ,/;_5 g(t)(ﬂ- /oo “ )2 g(f)dt

[’: (i L )z y(t)dt] :

An integration by parts yields

146 _ .
bald] = %[al? / y(t)dt—(g(l >:g(1+b))

(=& ~C 1
+[ Ndt+ | —— g(t)dt]
S - 148 I -t

and using equation (7) with @ - 8, we have

= 1 =&
Gslh) = = { +/U s g(r)dt+/ (t}dt] .

After a new integration by parts, this expression becomes

G = - [0(6)+(g'u+a)—g'u-m log, 4

(19)

=& o~
+ / log|l — #| ¢"(1)dt +/’ fog i< | g”(t)dt] .
- +6
Subtracting equation (5) from equation (19), we obtain
1
Gs() -G = = [ 0(6) + (g'(1 + 6) — g'(1 - §)) log &

146
—f log [{ — ¢ ¢"(t)dt] .
i—§

Thus,

|Gs(l) = G| < ;1; l0(6)+|y’(l+6)—g’(1-6)l|los 4

i+5 )
+[_6 [log | —t| | Iy"(t)ldt] -
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Now, since 0 < & < 1, it follows that |/ —¢| < l and log [l =] < 0 for[—6 <
i+6

t <144, ||onro./ [log|{—¢] | dt = / log |l - t|dt = 26(1 - log &).
-8 -4

This result, plus the mean value theorem and the estimate in equation (7),
allow us Lo write

|Gs(l) = G(1)|

IA

% [-:- M6+ 2Mé|log 8] + 2M¥(1 - log 6)]

§M [10
- o [?+4|log 61] .

In what follows, £ denotes an upper bound for the amount of noise in the
data, g° indicates the noisy data function and (5 represents the corre-
sponding associate solution function obtained using formula (17).

Lemma 4. (Stability). Let g g : IR — IR be continuous lunctions that

vanish at infinity laster than —. If [l¢ — ¢%]|« < ¢ then

! | ‘B
. €
|Gs = Gillx < i

Proof. From equation (17) we readily have

. e l - -t -
(Gah) = GE| < = /_oo (g(t) — g° (1) Hsll — )t
< : /\ \H (- t)|dt
£4
T &

The following proposition will show that in the absence of noise in the data.
the approximate solution f./ ., obtained with the new method. is uniformly
close to the exact density lunction f.

Theorem 2. (Consistency of the new method.) Under the hypothesis of
Theorem 1,

| 10
[forw = flln. < ) [Mgu' (4||og of| ¢ —-—)

‘4“0 0
4|1 — .
+ Ta' (log ol+ 3)]

(20)

irf ey 5
where })l{ - < M, and FT ) < My, for all (1,3) € IR x 52, §2 =

{z € R?:||x|| = 1}.
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Proof. By Lemma 3, given 3. identifying & with a and g¢(t) with
Fit, 8), we get |Fa(8) — FCoB)lee < : M(3) (4|log ol + 1—:?-) where

6‘]
S (4)

it follows that

2

< M(p). Since u

32 ({,3) is uniformly bounded in IR x S2,

; . o 10
1Fo — Fllo < 2 b1y (4110 ol + ) |
and we can write for all 8 € 52,
Foll,3) = F(LB) 4 a,(l) . (21)
a 10
where o,(1) = o(l); M, (4[ log a| + T)' -1€o(l) L1, —0 << .

Next, using relation (21), we rewrile equation (10) and (15) as follows:

1
fe) = o /uan=: [; Tim / Ho(z-8-1.3)F(, ﬂ)dl] g, (22)
and
l 1 X .
ro®) = g fog, [z [ etaes-1oRG 00

(23)
1
+— / Ho(z-8 - l,/j)a‘,(l)di] as .
r Jon
We estimate the difference between the inner integral in equation (22) and

the first inner integral in equation {23) by applying Lemma 3 again, with
b = o' and g(1) = F(I,3). We get

IGar — Glloe < a'le [4|log, o] + 19] : (24)
. »Pr
using the fact that T (!, ﬂ) < Mgy, for all {{,3) € IR x S%. Here,

(;,,:(:-13,[3):;/ Holz-8 - L8)F(LB)I |

and
Glr-3,3) = llm Gaulz-3.3) .

L'—O
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Subtracting equation (23) from equation (22), we get the estimate

1 o
@ = ool < gz [ NGar = Gl 48

1 1. [
T /W, = [ Wtz B-15) loa(t)ldl dB

=1 #

Using the estimate (24), the definition of o,(/) and evaluating

/_ T \Halz B - 1B)dI
we have

f(2) = fara(®)] < M (41108 a'|+-‘§)

811'2

+M—'(““ al¥ )_] /mu-

1~ foralloo < 55 [Mac (4110g o+ 37 ) + 2222 (4]10g ol + 3| .

The consistency estimate (20) shows that the first term is independent of
a and tends to zero when a' decreases, while the second term increases
withont bound for fixed @. The choice o' = 0(/&) gives the uniform rate
of convergence || f = fur ol = 0(y/allog a|) as a — 0.

The following proposition will show that attempting to reconstruct the
approximate Radon inverse function f, , is a stable problem with respect
to perturbations in the data function f, in the maximum norm and for fixed
o' and @. Asin Lemma 4, ¢ denotes an upper bound for the amount of noise
in the data, f¢ indicates the noisy data function and [ o Tepresents the
corresponding associaled densily lunction obtained using lormulas (15) and
(16). Notice that we only need continuity of the perturbed data function
for the application of the new method.

Theorem 3. (Stability of the new method). If ||f — f*||oc < €, then
. 8¢
"fh'.a - a’.cv” <

rtaa’
Proof. We apply Lemma 4 with g(t) = f(t,8), 6 = & and 3 fixed. With
If = S&|loo € € we obtain

4
1P = Filloo < — .
ra
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Applying the same Lemma again, with g(t) = F,(t,3), the perturbation
4¢/7é and § = o, we get, after integrating over the unit sphere,

8¢

“fa'.o 3L f;'.a"w < z4ul’u :

(25)
We observe that we have restored stability with respect to the data. In
fact, for fixed o' and a as ¢ — 0, fi, , — fo',a unilormly.

By using the triangular inequality, we have the following error estimate.

Theorem 4. (Convergence of the new method). Under the conditions of
Theorems 2 and 3.

1 P |
”fa'.a“oo < omt [Mga' (4] log o | + -5-)
4M,a 10 8¢
o' (4“08 al + "3—)] +

o' o’

Remarks.

1. With the choice a = 0(1/¢€), we obtain uniform convergence with rate
0(c"/4|log |, provided that o’ = 0(y/a) as in Theorem 2.

2. The three dimensional image reconstruction from cone-beam projec-
tions leads naturally, in the case of radial symmetry, to the study of
Abel’s type of integral equations. For a complete analysis and the
numerical implementation of the ideas discussed in this paper, ap-
plied to the one dimensional case, the reader is referred to Murio et

al [9].
Appendix.

Lemma 2, Section 2. (Ludwig [6], pp. 52).

Let g(t), g : R — IR be such that ¢'(¢) is continuous and vanishes at
infinity together with g({) faster than ﬁ; then
[§(w) sgn @]'(t) = i(Hg)(2) .
—oc < t < oo, where (f)v(t) = f(Hand 1=/ 1.
Proof, Define

1 o o0
hit) =, j / g(s) sgn w 'l ds duw . (26)
21 J oo J-oo
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o _]__._ > L . —tws twt
h(t) = vl sgn w (\/27& /_oo g(s) e ds)e dw
2 _1_ = ~ro oy twt
= o . sgn wi(w)e" " dw |
h(t) = [g(w) sgn w]'(t) . (27)

Equation (27) states hat h(t) is the one dimensional inverse Fourier trans-
form of the function g(w) sgn w.

On the other hand, from the definition (26), we have

h(t) = % /-: /_: g(s) sgn w sin(w(t — 8))ds dw .

o0
After integrating by parts, recalling that / ¢'(s)ds = 0 we can write
-00

; 1 oo - -
ht) = * _g,(s)cosw(t 8) ldsdw
T Jo -0 W

$t / / -g'(s) Cosito2) ds duw .
T N S o0 w

Interchanging the order of integration, we have

where

h(f):% /“” siftan /0'3" cosw(t —3)— H(1 —w) il

_— Ww

mi-o={9 £

Ittt — s #£0, weset @ = w|t - s{|. Thus,

os 0 — H(l -
cos Q1(1 ) i

L =Xyt (I . ”__)

+.“ = m ~ d§}| ds

" ~ .'
hit) = = /\ —4'(8)

I ’
= j ~¢'(s) [e - log |t — s||ds .
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with ¢ constant.

Hence,
W) = = / d'(s) log|t — s|ds
= & lim/ g(s)ds
T e=0 Jlt—sppe bl — 5
and

h(t) = 1(H})(L) . (28)
Finally, from equations (27) and (28) we have [§(w)sgn w]¥(?) = {(H})(2).
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