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n-manifolds, n = 2, 3, with non-positive sectional curvature.
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1 Introduction

Let (M, g) be a n-dimensional, compact, connected Riemannian manifold with
smooth boundary ∂M . The operator L : C∞(∂M) → C∞(∂M) defined by
Lu = ∂û

∂η , where û is the harmonic extension over M of u and η is the unit
outward normal to ∂M is known as Dirichlet-Neumann operator. The first non-
nule eigenvalue ν(M) of L is called the first eigenvalue of the Steklov problem and
it is variationaly characterized by:

ν(M) = min



R[ϕ] :

∫

∂M

ϕdσ = 0, ϕ ∈ C∞(M)



, (1)

where R[ϕ] =

∫
M

|∇ϕ|2dυ
∫

∂M

ϕ2dσ
is called Rayleigh quotient. For the Euclidian ball of the

radio r > 0 the first eigenvalue is ν = 1
r with its own space generated by the

coordinate functions. A function ϕ such that
∫
∂M

ϕdσ = 0 is called test function.

Starting from the variational characterization given by (1), if ϕ is a test function
over M then ν(M) ≤ R[ϕ].

In recent years, different authors, among them Weinstock [14], Kuttler and
Sigillito [8], Payne [13], Escobar [4, 5, 6], Wang and Xia [15, 16], Illias and Makloul
[7] and Montaño [9, 10, 11, 12] among others have dealt with the problem of finding
geometrical estimates for the first eigenvalue of Steklov.
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In this article we find lower bounds for the first eigenvalue of Steklov in geodesic
balls and simply connected domain of a Riemannian n-manifold; where n = 2, 3,
complete of non-positive sectional curvature.

Our result is extended to Riemannian n-manifolds; where n = 2, 3, the
estimate of Kutler-Sigillito for star-shaped domains of the plane [8].

2 Preliminaries

For this article, (M, g) will be a Riemannian n-manifold; where n = 2, 3, complete,
simply connected and with non-positive sectional K curvature. Since M is
complete, then for every p ∈ M the exponential function expp is defined over all
TpM . Moreover, since K ≤ 0 over all M the Hadamard theorem [1] implies that
expp : TpM → M is a difeomorphism, that is, M is difeomorphic to Rn ≈ TpM ,
n = 2, 3.

Under the given hypothesis

υ(t, θ) = expptξ(θ), t ≥ 0, ξ ∈ Sn−1, (2)

it is a parameterization in geodesic coordinates for M .

When n = 2 the metrics can be written in the form of

ds2 = dt2 + f2(t, ξ)dξ2, (3)

where f(0, ξ) = 0, ∂f
∂t (0, ξ) = 1 and dξ2 is the metric of S1 [2].

When n = 3 the metrics can be written in the form of

ds2 = dt2 + hij(t, θ)dθ
i ⊗ dθj . (4)

For every t > 0 the boundary of the geodesic ball with center p and radio t,
∂B(p, t),is difeomorphic to S2 and thus hij(t, θ)dθ

i ⊗ dθj is a metric over S2. The
Uniformization theorem implies that the metric is conformally equivalent to the
standard metric over S2 ([6] pag 152). Therefore, we can assume that the metric
over the 3-manifold is also in the form of

ds2 = dt2 + f2(t, ξ)dξ2, (5)

where f(0, ξ) = 0, ∂f
∂t (0, ξ) = 1 and dξ2 is the standard metric of S2.

Since the sectional curvature is non-positive, then the Bishop comparison
theorem [3] implies

∂

∂t

{
f(t, ξ)

t

}
≥ 0, (6)

f(t, ξ) ≥ t,

and therefore

1 ≤ lim
t→0+

f(t, ξ)

t
≤ f(t, ξ)

t
≤ f(1, ξ) ≤ fo = max

ξ∈S1
f(1, ξ). (7)
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3 Estimate for the First Eigenvalue over a
Geodesic Ball

Theorem 3.1. If Bp ⊂ M is a geodesic ball with a ratio 1 and center p ∈ M ,
then the first eigenvalue of Steklov satisfies the inequality

ν(Bp) ≥
1

fn+1
o

, (8)

where fo = max
ξ∈S1

f(1, ξ). The equality is achieved only if Bp is isometric to the

Euclidian ball of radio 1.

Proof. From (6) we have

Rg[ϕ] =
∫
Bp

|∇ϕ|2 dυ
∫

∂Bp

ϕ2dσ
=

∫
Bp

{
ϕ2
t +

1
f2

∣∣∇ϕ
∣∣2
}
fn−1dtdξ

∫
∂Bp

ϕ2fn−1dξ

≥

∫
Bp

{
ϕ2
t +

1
f2

∣∣∇ϕ
∣∣2
}
tn−1dtdξ

∫
∂Bp

ϕ2fn−1dξ

≥ 1

fn−1
o

∫
Bp

{
ϕ2
t +

1
f2

∣∣∇ϕ
∣∣2
}
tn−1dtdξ

∫
∂Bp

ϕ2dξ
,

and from (7) it follows that 1 ≥ 1
f2
o
and t2

f2 ≥ 1
f2
o
, and therefore

Rg[ϕ] ≥
1

fn+1
o

∫
Bp

{
ϕ2
t +

1
t2

∣∣∇ϕ
∣∣2
}
tn−1dtdξ

∫
∂Bp

ϕ2dξ

≥ 1

fn+1
o

Rδ[ϕ],

where δ is the Euclidian metric and ∇ is the gradient over Sn−1. If ϕ1 is a

eigenfunction for ν(Bp, g) and choose the constant b such that ϕ := ϕ1 − b serves
as a test function for the first eigenvalue of the Euclidean ball, ν(Bp, δ) = 1, then

ν(Bp, g) = Rg[ϕ1]

≥ Rg[ϕ]

≥ 1

fn+1
o

Rδ[ϕ]

≥ 1

fn+1
o

.
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The equality is given only if f(t, ξ) = t, in such caseBp is isometric to the Euclidian
ball of radio 1.

From the Escobar comparison theorem [6] and from our estimate, we have

1

fn+1
o

≤ ν(Bp, g) ≤ 1. (9)

4 Simply Connected Domains

In this section, D is a simply connected domain of TpM and Ω is also a domain of
M such that Ω = expp(D). υ(t, θ) = expptξ(θ) is a parameterization in geodesic
coordinates of M , where ξ(θ) is a parameterization of Sn−1. We suppose that
the boundary of D is smooth and it is given by ∂D =

{
Rξ : ξ ∈ Sn−1

}
, where

R : Sn−1 → R is a strictly positive smooth function. In geodesic coordinates, the
function F (t, θ) = t−R(θ) is such that ∂D and ∂Ω are curves (surfaces) of 0 level
of F in the parameterizations tξ(θ) and υ(t, θ) respectively. For this reason the
unit normal vectors to each one of the boundaries are given by:

ηδ =
1

Wδ
(∂t −

∇R

R2
), where Wδ =

√

1 + (

∣∣∇R
∣∣

R
)2, (10)

ηg =
1

Wg
(∂t −

∇R

f2
), where Wg =

√
1 + (

∣∣∇R
∣∣

f
)2. (11)

From the previous identities, if we solve the equations cos γ = 〈ηδ, ∂t〉 = 1
Wδ

and cosψ = 〈ηg, ∂t〉 = 1
Wg

we obtain:

(

∣∣∇R
∣∣

R
)2 = tan2 γ, (12)

(

∣∣∇R
∣∣

f
)2 = tan2 ψ. (13)

From the inequality 1
f ≤ 1

t it is deduced that over the boundaries

tan2 ψ = (

∣∣∇R
∣∣

f
)2 ≤ (

∣∣∇R
∣∣

R
)2 = tan2 γ. (14)

4.1 Estimate for the Integral of the Squared Gradient Over
Ω

Let us suppose that the angle γ satisfies the inequality:

tan2 γ ≤ a (15)

for a > 0, that is; (
|∇R|
f )2 ≤ (

|∇R|
R )2 ≤ a.
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Changing the variable θ = u and t = ρR(u) we have:

∫

Ω

|∇ϕ|2 dυ =

∫

Sn−1

R(θ)∫

0

{
ϕ2
t +

1

f2

∣∣∇ϕ
∣∣2
}
fn−1dtdξ

=

∫

Sn−1

1∫

0

1

f2

{
∣∣∇ϕ

∣∣2 − 2ρ
ϕρ

R

〈
∇ϕ,∇R

〉
+

f2 + ρ2
∣∣∇R

∣∣2

R2
ϕ2
ρ

}
fn−1Rdρdξ.

Since −2ρ
ϕρ

R

〈
∇ϕ,∇R

〉
≥ −

{
α2

∣∣∇ϕ
∣∣2 + ρ2|∇R|2

α2R2 ϕ2
ρ

}
for every α > 0, then

∫

Ω

|∇ϕ|2 dυ ≥
∫

Sn−1

1∫

0

{
(
1

R2
− ρ2

∣∣∇R
∣∣2

f2R2
β2)ϕ2

ρ +
1

f2

β2

1 + β2

∣∣∇ϕ
∣∣2
}
fn−1Rdρdξ,

where β2 = 1−α2

α2 . The sectional non-positive curvature implies that f(t, ξ) ≥ t

therefore − ρ2

f2(ρR,ξ) ≥ − 1
R2 and that results in

∫

Ω

|∇ϕ|2 dυ ≥
∫

Sn−1

1∫

0

{
1

R
(1− aβ2)ϕ2

ρ +
R

f2

β2

1 + β2

∣∣∇ϕ
∣∣2
}
fn−1dρdξ.

If we resolve the equation 1−aβ2

R = Rβ2

1+β2 for β2 we obtain

β2 =
−R2 − a+ 1 +

√
(R2 + a− 1)2 + 4a

2a
> 0. (16)

Therefore

1− aβ2

R
=

Rβ2

1 + β2

=
R2 + a+ 1−

√
(R2 + a− 1)2 + 4a

2R

=
2R

R2 + a+ 1 +
√
(R2 + a− 1)2 + 4a

≥ 2rm

r2M + a+ 1 +
√
(r2M + a− 1)2 + 4a

,

with rm = min
Sn−1

R and rM = max
Sn−1

R. Going back to the integral we obtain

∫

Ω

|∇ϕ|2 dυ ≥

2rm

r2M + a+ 1 +
√
(r2M + a− 1)2 + 4a

∫

Sn−1

1∫

0

{
ϕ2
ρ +

1

f2

∣∣∇ϕ
∣∣2
}
fn−1dρdξ,

127Volumen 18 No. 2, diciembre 2014

Lower bound for the first steklov eigenvalue



getting the estimate ∫

Ω

|∇ϕ|2 dυ ≥ C

∫

Bp

|∇ϕ|2 dυ, (17)

with

C =
2rm

r2M + a+ 1 +
√
(r2M + a− 1)2 + 4a

.

4.2 Estimate for the Integral over the Boundary of ϕ2

∫

∂Ω

ϕ2dσ =

∫

Sn−1

ϕ2

√∣∣∇R
∣∣2

f2
+ 1fn−1dξ.

Since f(R, ξ) ≥ R then

∫

∂Ω

ϕ2dσ ≤
∫

Sn−1

ϕ2

√∣∣∇R
∣∣2

R2
+ 1fn−1dξ

≤
√
a+ 1

∫

Sn−1

ϕ2fn−1dξ,

getting the estimate ∫

∂Ω

ϕ2dσ ≤
√
a+ 1

∫

∂Bp

ϕ2dσ. (18)

4.3 Estimate for the first eigenvalue of Steklov over Ω

From the estimates calculated in the previous sections (17), (18), we have the
following estimate for the Rayleigh quotient:

R[ϕ] =

∫
Ω

|∇ϕ|2 dυ
∫
∂Ω

ϕ2dσ

≥ C√
a+ 1

∫
Bp

|∇ϕ|2 dυ
∫

∂Bp

ϕ2dσ
,

where C = 2rm
r2M+a+1+

√
(r2M+a−1)2+4a

andBp is the geodesic ball overM with center

in p and radio 1.
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4.2 Estimate for the Integral over the Boundary of ϕ2

∫

∂Ω

ϕ2dσ =

∫

Sn−1

ϕ2

√∣∣∇R
∣∣2

f2
+ 1fn−1dξ.

Since f(R, ξ) ≥ R then

∫

∂Ω

ϕ2dσ ≤
∫

Sn−1

ϕ2

√∣∣∇R
∣∣2

R2
+ 1fn−1dξ

≤
√
a+ 1

∫

Sn−1

ϕ2fn−1dξ,

getting the estimate ∫

∂Ω

ϕ2dσ ≤
√
a+ 1

∫

∂Bp

ϕ2dσ. (18)

4.3 Estimate for the first eigenvalue of Steklov over Ω

From the estimates calculated in the previous sections (17), (18), we have the
following estimate for the Rayleigh quotient:

R[ϕ] =

∫
Ω

|∇ϕ|2 dυ
∫
∂Ω

ϕ2dσ

≥ C√
a+ 1

∫
Bp

|∇ϕ|2 dυ
∫

∂Bp

ϕ2dσ
,

where C = 2rm
r2M+a+1+

√
(r2M+a−1)2+4a

andBp is the geodesic ball overM with center

in p and radio 1.
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If ϕ1 is a eigenfunction for the first eigenvalue over Ω and chose the constant
b such that ϕ = ϕ1 − b serves as a test function for the first eigenvalue of the
geodesic ball Bp, then

ν(Ω) = R[ϕ1]

≥ R[ϕ]

≥ C√
a+ 1

ν(Bp)

≥ C√
a+ 1

1

fn−1
o

.
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