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Abstract

This paper considers the prescribed scalar curvature problem on the sphere for n > 3.
Given a prescribed scalar curvature function K : S™ — R and a centered dilation defined
by F, =% 'oDgoX, y € B""! where ¥ is the stereographic projection and Dj is a
dilation in R™, in this work we estimate the gradient of the function K near the critical
point of the function J,(y) = [4. K(¢)¢""'do(¢) where ¢(y) = |(Fy_1)'|nT4. We will use
this estimate to find L? estimates of the first two y-derivatives of the function K o Fy(§).

Keywords: metrics, scalar curvature, conformal geometry.

1 Introduction

Let (S™,0;;) be the unitary sphere with the standard metric. A natural question
in Riemannian geometry is: Given a function K : S™ — R, is there a metric g
conformally related to the standard metric d;; such that K is the scalar curvature
of S™ with respect to the metric g7 This is equivalent to the problem of finding a
positive smooth function u : S™ — R which satisfies the equation:

n(n —2) n—2

n+2
Au — Kun—2 = 0. 1
u 1 u—|—4(n_1) urn=2 =0 (1)

If we set g = unz dij, where u is a solution of this problem, then the function K
is the scalar curvature of S™ with respect to the metric g.

The problem of conformal deformation of metrics in S™ have been extensively
studied by many authors (for example, see [1, 2, 3, 4, 5, 6, 7, 8] and the references
therein). An important feature of this problem is that it is a conformal invariant
one. More precisely, if u is a solution of equation (1), then for any conformal map
F : 8™ — S" the function ap(u) = [(F~)|"= uwo F~! is a solution to problem
(1) with scalar curvature K o F.
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The problem of conformal deformation of metrics in S™ can be approached
using the so called Yamabe method, which consists in studying first the subcritical
problem in the equation (1):

n(n —2) n—2

Auy, — T Ut — Kub =0, (2)

with p € (1, Z—fg) and then consider the limit of the solutions when p 1 Z—J_Fg

Let E(u) be the energy norm associated with the linear part of (2), that is:

s = [ (221 ) s,

and let

S = {u € H'(S™) with u > 0 almost everywhere and with E(u) = E(1)}.

Let us consider the open unit ball B"*! and the map ® : B! — S defined by:
_ n—2
O(y) = oy = ar, (1) = |[(F )] 7=,
where F, : S™ — S" is the restriction to S™ of a special conformal map
F, : Bntl — Bntl that satisfies F,(0) = y and fix the points :t%; this function

maps 0 to y and commutes with rotations about the line joining the origin and
the point y. This map is referred to as a centered dilation.

For p € (1, Z—fg) and u € S, let Jy,(u) defined by:

JIp(u) = KuP™do.
Sn
If u is a critical point of J,(.) on S, then a multiple of u satisfies problem (2). Let
us define the function J, = J, o ®.

This work is motivated by the work of Schoen and Zhang [7] on the prescribed
scalar curvature problem on the n-dimensional sphere, n > 3, where they prove
an existence result for n = 3.

To determine the nature of the critical points of J,, they study the critical
points of .J, and then make a perturbation argument. In order to understand the
nature of the critical points of 7p near the border of B"*!, they study the behavior
of K near those critical points.

In this paper we will study more closely the behavior of the function K near
the critical points of J,. Given a critical point yg of J,, near S™, in this work we
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will find an estimate of the gradient of the function K at the point |Z—2| and we will

use this to find L? estimates of the function f o Fy(§) = <K oFy(&) - K (%))

and its first two y-derivatives. Our method to get the estimates parallels that
of Escobar and Garcia ([3]) in the problem of prescribed mean curvature on the
boundary of the ball. In a coming paper we will use the estimates found in this
work to give an alternative proof for some of the results in [7].

2 Preliminaries

Let y € B""l. Up to a rotation we will assume that y = (0,....,0,9,41). In
this case the centered dilation function F, is given by Fy(z) = X! o Dgo
Y(z), where the functions ¥ and Dg are defined as follows. The function
> @ B\ {(0,0,...,0,—1)} — R%! is defined as ¥ = T_5 0 Iy o Ty where

2
To(x1,.. .y Zpnt1) = (X1,. .., Ty, Tpt1 + a), and I is the inversion map = — ]‘R'

Here Rflﬁl denotes the upper half (n + 1)-dimensional Euclidean space.

Hence,

Xr) = ) |— ?
Z]* + (L4 2pg1)? 2 + (14 2p41)?

where T = (21, ...,x,) and = (T, xp41). Observe that if x| = /[Z|? + 22, =1,

then o
S(z) = <—"’30> .
1+ Tn41

Thus the map X|gn_{(0,0,.,0,—1)} is the stereographic projection. The inverse
function of X is:

Z_l(:v) _ ( 4z |.ZL‘|2 )
S\ R4+ Q4w )2 R+ 2+ 101)? )

When z,4+; = 0 we get

4T 4 —|7)?
2_1 _90 = 9 )
@0 = (5T )
which is the inverse of the stereographic projection from the south pole of the
sphere.

The function Dg : R — R is defined by Dg(z) = B, where 8 = -yl

Proposition 2.1. If F, =%"10DgoX then
Fy(x) = B™'(48A7, (A* — 48%z|* — *(1 — |2]*)))

and Fy(0) =y, where § = IyI x=(T1,. ., Tpy1), T=(T1,...,%pn),

=@+ (1 +2n41)® and B =457 + [A+ B(1 —[z*)]*.
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Proof. Since

46T 28(1 =54y — |f|2))
DgoX
p o xlr) = (|$|2 1+ zp41)? 2P+ A +x001)2 )
then
o= (T 0 la)
7|2+ (14 2ne1)?” |72+ (14 2p41)?
— S (4BA7IT, 2847 (1 — a2, — [7]?)
= B~ (4BAT, (A” —45%[z)" - B7(1 - [z]*))).
Therefore

Fy(x) = B~ (4BAz, (A* — 4B%z|* — B°(1 — |=[*))).
If 2 =0, then A =1 and B = (1 + 3)2. Hence,

_ —2 2y _ 1-62\ 1-8Y\ B
F,(0) =[(1+8)77](0,1-5%) = (Oam> = (0»m> = (0,Ynt1) = ¥.

Since Fy(0) =y then g = 1+| |‘ when y, 11 >0 and = HIZ" when y,11 <0.
For this paper we will use the convention that when [ is large, we call it A and
when [ is small we call it u. Observe that F - V'= F_,. In order to get the L?
estimates of the derivatives of the function K o F,, we need the estimates of the

derivatives of the function F,. If we rewrite the function F), as

(422 — 8%, |z = sl* — 4u%2'2)

F,
|2 — 8|t + 4p?|z[?

y(2) =

)
where Z = (21, 22,...,2n), 2 = (Z, Zn41), the calculations in [3] leads to

Lemma 2.2. For1<i:,5<n+1

OF, C
“(2)| € ——— (3)
Ay prlz = s
and o c
‘ 7‘ : 2—r + T - 1—7r7
0@/]0% |z — s prlz — s
where z € S™, s = (0, —1), p = 7|y| and 0 <r < 1.

+lyl

Proposition 2.3. For x € S™, we get

* 1- |y’2 ?
F (5Zj) (|y+x|2 5@j3

where Fy(d;5) is the pullback of the metric ;5 induced by the function F,.
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Proof. Given x € S™, straightforward calculations show that

E*((Sz]>m(€z,6]) =< g—i, 8872; >= —(1+mi+1)2 (51‘]', DZ’((s’L])E(QS)(ez;GJ) — /8262,],,
and

1 16

(% 1) (5ij),82(:r)(eia€j) = 50ij-
il 2 14
|§|2 + (1 -+ $n+1)2

Hence,

1Nk 1+ 2,41)2
(E 1) (5ij)52(x)(eiaej) = (52( ( +1) 51]

1 —2pt1) + (1 + 2041))?

Since the metrics ¥*(d5;), (27')* and D} are diagonal, then
Fy*(8i5) = £(8i)-Dg™ (8i)- 2" (835)-
Thus,

(1 + mn+1)2 4
(B2(1 = zpg1) + (L+2011))? (T +2001)

Fy(0ij)(ei ej) = 5020

hence,
432
(B%(1 = 2ng1) + (L4 2p41))?

Fy(di5)(eire5) = 0ij-

If 4,41 > 0, then 8 = L—lvl where ly| = yn+1 and consequently

2
B(1 = ) + (1) = (1511 (0= ) + (L)

(L= lyD*(A = zner) + A+ yD* (A + Tp1)

(L+lyl)?
_ 201+ ly? + 2[y|znt1) _ 2y + z|?
(1+Jy))? (1+y[)?
Then,
P (5) (ene)) = 42 ;o ) G- .
vy v (62(]— - Z'n—}—l) + (]. + $n+1>)2 K (ly + x|2)2 [

_ AP (1PN,
(Iy+aP2™ ~ \ly+ap) ™

1— 2
From now on, we will denote for |(F,)'[({) = ‘ +|‘7é:27
Y

¢ € S™, the linear

stretch factor of the conformal transformation F,.
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Proposition 2.4. In stereographic coordinates

A(|z|* + 4p?)
([Z2 +4)(1 + p2)’

ly— ¢ =

where p = Ll and ¢ces".

T+yl”
Proof.
2 2 2 4 [z 2
_ A+ P +4) —2ly[(4 - [7]%)
|Z|? + 4
_ (D2 +40 - |yD)?
Z[* + 4 ’
and therefore,
4(|z|? + 4p®
|y _ C|2 — (| ‘ )

(Iz]> + ) (1 + p2)’

where in the last equality, we have used |y| = Eﬁ

2 Main Result

The main purpose of this work is to give the following estimate for the gradient

of the prescribed scalar curvature function K near a critical point of the function
7,

Theorem 3.1. Let y be a critical point of the function J, near S™, then,
ifn:&IVK(%O]gcwﬂ”
)

and

ifnza‘VK(%O\SCﬁﬂ%
Yy

where w 1s any small positive number less than one.

Proof. Let us take rectangular coordinates in R”*! such that
y = (0,0,...,y|), then |y|~ty = (0,0,...,|y|t|y|) = (0,0,...,1) = N. Since

70 - [ xo(-2) T ot

then,

s (5 1—|y|2)”22<p*”{ TR
= ““”LK(O(W—W T Ty —qe | P
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Evaluating at the critical point y we find that for j =1,...,n

oJ

0= Ty = e [ (B0 T (2w

y; ly — (|? ly — (|2

and therefore,

1—M3%%H% G )U _
[, %@ (|y —¢p pcpg) =0

The last integral also vanishes when K is a constant. Thus,

[ E) <|1y_—’gé=> o (p) =0

[ (52) 7 (o =

This equality, in the stereographic coordinates is equivalent to:

Hence,

JRLERIOE ((1 + 1) (foP +4>)”“‘"22 > o

gn+1-"326 |z|? + 4p

+2

where § = 2= — p is a small positive number.

The transformation y = px yields

/ (K(pzx) — K(0))x;dx 0
re (p2|x|? + 4)”%25—1(|x|2 + 4)n+1—"T_26

By Taylor’s Theorem, there exists dg > 0 small enough such that for
|z| < u=16o we have:

. 3 3

It is easy to check that

Qdm

> C,
/Bu—uo«n( 2|z)2 4+ 4)"7 0~ 1(!3:]2—#4)"“*725
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and therefore

> gK (0)z;zdx

— Oz 0K
/ H n-2s 1 1_n=25 2 C:u (9_(0)’ :
B,—15,(0)  (02[z[? +4) 72 07 (Jz2 + 4)" T T
On the other hand,
> 82,2;; (0)z;jzpx;dx
i,k 2 k B O

1M2/
n—2 n—2
27 B, @ (2] + 4) 7707 (a2 4 4y

because of the symmetries of the ball, and a straightforward calculation yields:

3 d
B,15,(0) (p?|z[* +4) =07 (a4 4)m T

where w is a small positive number, and

/ (K (pz) — K(0));dx
R\B, 1, (0) (42 |z[* + 4)" 5251 (|z]2 4 4)nt1- 520

|£L’|(4+M2|I’|2)dl‘ < C,un—l—(n—Q)é.

S C n-2 n—2 =
R\B, 1, (0) (2]x]2 +4)"F O (|22 + 4)n 120

The last inequalities and equality (4) imply:

K
C’,u 8_(0) < Cu3—w + Cun—l—(n—2)6'
81’]'
Then if n =3
oK
_(0) < C,u27w + C,u175 < C,uliw,
al‘j
and if n > 4,

0K .
R < w
%, <o>] <cu

In the following propositions, we will use this estimate to find some estimates

on the function K (F,((§)) — K (%) and the first y- derivatives of the function
)
K oF,.

Lemma 3.2. Let y be a critical point ofjp near S™ and let f = K — K (%) If
1 <q<mn, then, ||foF,lloq <Cu?>" for some 0 < w < 1.
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Proof. Taylor’s Theorem yields:

o R©l = KR - & ()

o (2

in a geodesic ball of radius r and center % Here 7 and C5 denote positive
constants.

Then,

2

<0 Fy(6) — %

Y

Fy<£>—§—|\+cz

q q 2q

+Co [Fy(6) —

_ Y

) 1< C

7 ()

Since
I Blliy = [, 170 Fu@ltdo, = [ 170 Ry@ltdoy + [ 1o Fy(@)rdor,

then it follows that

1/q 1/q
(/ \foFy(ﬁ)lqdag) =</ 1 o Fy(€)|%doy + / IfoFy(€)quJg>
Sn Vv S7\V
1/q
< o ( / |foFy(£)|qd0g)
1/q
o ( Lo |foFy(€)|qdffg> -
On the one hand,
1/q
( / |foFy(€)|qd0g) < Oyt ( /
Vv Vv
C
+ 2(/‘/

y q 1/q
Fy(é) — m dO'g)

2q 1/q
dag> .
2q> 1/2q

F,(¢) - f;—|

By Holder’s inequality

q 1/q
i dag> <C </
Vv

Fy(¢) - %
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Then,

(f IfoFy(f)Iq)lmstl_‘” (ﬁ
L, ( /

Assume that I_g_l is the north pole N. Since F,(N) = N, in stereographic
49| pr] 2

(4 + |pxf?)
integral on the right hand is equivalent in stereographic coordinates to:

/ 49| x| 2"dx
Br, (4 |pz|?)® (4 + |z|*)"

1/2

Fy(€) -

2q 1/q
Y do,
|y
Y
Fy(§) — il

2q 1/q
do
y 9)

coordinates |F,(§) — N| = (see figure below). Therefore, the second

where Bp, is the image of the geodesic ball V under the stereographic projection.

Hence,

|z

4+ |z|?

1/q )
( / |f0Fy(£)|") < v,

| e R@rde, = [ 1O oy (<)
Sn\V

Fy(S™\V)
A"

< C/ s dr,
ke\Br, (L+ R[]

i
[ 1@ - Nao, <c [ ( ) dr < O,
v Br,

Consequently,

On the other hand
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where A = 2l — ;=1 Therefore,

1—|y]

AT Y R L
A @ =X | G
R"\BRI (1 + A ['(L.I )1‘?. Ry (1 + /\ T )n

oo n—1
= C/\“f e
Ry A2y

SC)\_“/ P~ Ly,

Thus,

A'ﬂf
s dr < CONT" = O,
/I;“\BRI (1+ A[af?)"

and

1/q
([5‘ \V /o Fy(g)lngg) < OpM = Cpt.

It follows that: ,
I1f o Fy(©)llog < Cp*~".

Proposition 3.3. Let yo be a critical point of J,, near S™, and let a small ball
B,, C B"*! ify € B,, and q € (%.,n) then, |V, (K o F,)|lo,q < Cu'~"", where

_ 1-Jyo

B= g0l and w* is a positive number less than one.

Proof. Taking r = 0 in the last lemma, we get

I / IV, (K o F,)|1do < / VK (F,)|Y|V,F,|"do
sn sn

VK (F,)|?
sn |z — sl

<C do(z),
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Using in the above figure similarity of triangles, we find that |z — s| =
4

VA 2>

coordinates to

Consequently, the integral in the right is equivalent in stereographic

AR Ll
: T @+ 2Py

By Taylor’s Theorem there exists D > 0 such that if |z] < R = Du~!, then, we

have
VK (px)|? < CIVK(0)|? + Cfux|?.

Therefore,
K(0)[4 q d
r<c / VE(QF + Juz] dx+/ .
Br(o) (4+[x]2)n=9/ Rr—1\Br(0) (4 + |z|?)~4

On the one hand, taking « such that n — « is a very small positive number
and using ¢ < n we get:

Br(0) (44 [2[?)n=2/? Br(0) (44 [2[?)n=a/?

—1

Dp (7,,2)@/2
1—w n—1—«
< op >/0 . (—(4 . TQ)n_m) dr

< Cluq—wo

where wg = —wq + o — n. It’s easy check

n 2Yq/2|,, 2|4 Dp~!
/ 2 (4+ |CIZ| ) > |,U,£lf| dx < C’,uq/ T_n_1+2qd7" < un—q
Bro) A4+ [z[?)" 0 2¢ —n
On the other hand,
/ dx . /b dx
< lim
Ro-1\Br(0) (44 [22)"79/2 T booo Jo-1 (44 [z]?)nm9/2
b n—ld b
< lim Z—T = lim roimntagy
b— 00 cu-1 T (n—q/2) b—o0 Cp—1
< ¢ e
n—q
Letting w* = min{*?,1 — “4}, the estimate follows from the above

inequalities.
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Proposition 3.4. Ifg<n and 1— 2"—q <r< %, then the following estimate holds:

IVyVy(K 0 Fy)llog < Cp™",

Proof. By the previous estimates of ||V, (K o F)) and ||V, V, (K o F})||, we get

|vyvy<K © Fy)|q < C<|VyFy|2 + |vyvay|)q

Cy 2+ Cy !
Mr|z_s|1—r 'urlz_8|1—r )

Using Holder’s inequality, to get the desired estimate is enough to estimate
the integral
do(z) _C 4+ |x|2)(1_r)qd
N M2rq|z_s|(2—2r)q - P2 fpn (4 |z]2)n L
But

P oy Y Y CEA il
n Bl(O) R"\Bl(O)

(4 + [a]?)" (4 [x]?)" (4 [a]?)"

Let us estimate the first integral in the right side

2\(1—r)q 1 n—1 1 1
Bio) (4 [l)n o (4+t2)n-(-md o (4+2)nt(r—1a

Since ¢ < n and 1 — 2% < r taking v > 0 such that 0 <n — v < 1, then we have:

1 in—1-v(42\v/2 1
t t C
/ () dt < C/ g = ,
0 (4 + t2>n+(7"—1)q 0 n—u

where we have used that g < g <n-—(1-r)gq.
On the other hand,

4 2\(1-r)q oo n—1
JARC L iy . i——_C
R\By(0) (44 [z[*)" 1 (4 g2)nrlr=ha 2(r=1)g+n

Consequently,

1/q
([ wmrempant) < cu
Sn
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