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Abstract. Ln this paper we consider 2 generalization of the Tikhonov Regulunzation tor the

linear ill-posed operator equanions AL = 4 using the et

ME[ s RT - 5] valReff + el

where g = 0,00 > () and can e a hineal of nonlingar operator.

We develop existence, stalility, convergence resulls wel snor estumatss of the approximatard soli-
tions o the problem ma Hilbert spece setting. We applicd the methed te some paritoulisr Frecdheln
integral equations of first kind.

1 Introduction
In this paper we consider the genaralization Tikhonev regularization [or
the operator equation

Ax = p (1)
where 4 - ¥ — ¥ s a compact operator between Hilbert spaces
Many inverse problems can be modeled by a [wst Fredholm mtegral cqua-
tion

fhxls)= Ik{ sElx(idt = wrs)

where the kemel function k is a conimuous and smeoth function over a
compact domain (). IF K is nor degencrate then it 15 well known that the
solution of {1) does not depend continuoisly of g 1n and we deal
with an ill-posed problem. Therefore regularization techniques are needed
in order 10 slabilize the approsimated solutions. The regulanzation Tikhonoy
technique 1s based in the used of two regularization paramelers

By using an appropriate operator R which depends on prior knowledge of
the exact solution x of (1).

2 Linear 1LI1.-Posed Problems
The problem (1) is an ill posed in the sense that the solutions do no de-
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pend continuous!y on The data. The gencralized solution ot the problem (1)
is X where ever
yeD(A" ) =R(A)BR(A)

the domain of the Moore-Penrose inverse A" of A.11 15 well known that
ifRf A} is not closed, the operator 47 is not bounded and then the problem
(1) 12 ill-posed. In general. the data ¥ may nol be available exactly, instead

of we han an approximation y* such that
ﬂ,‘;—-‘ - jfﬁ <€

In order to find an approximate solution 10 the generalized solution, we
consider the minimization problem

1 1&' - ‘- *I" 1 L] It
min fu_B[.i AR ] (F.p) (2)

where
Meg| oyt | = MEp [t ARy
=Jace) [ +ake- > +BIRO2I.
and #is a regulurized operator R: D(R)c X — ¥ be a densely defined

with closed range. w,p 20, xe [JfK)

The Tikhonov generalized solution that depends of two parameter is the
mimmize ol the problem (2) given by

Af x)- N + l
JL:.,p = arg min ” Ve ’
S | e ot neo |

=rA* A+l +BR*¥R )T A* 4"
Ihe paper is organized as follows. In section 3 we present our main results

on stability and convergence rafes. In section 4 we apply our results to
several examples related with Fredholm equations of first kind.
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3 Convergence Analisis
Theorem 1: (Convergence-Stability).
(i) Assume that the problem 4 x J = v has a solution and suppose

-]

¢!
g, =0 a, -0 fA,—=20 =10
[F

i

£,
and — 0

i,

(4
I h L= W e .ﬁ' n [ by d ;
Then the sequence { on 1, /has a subsequence {x,.} converging strongly

toa y*-mns., w suchthat 4/w) yand Arx, )— vand Rix, ) » R wi

() Assume that the problem .1(x ) = y has a solution and suppose

I_}’ — 3 I g, =0,

g, o
w,—=+0 B,—>0 L —=0and =+ -0
]

Then the sequence { JL;} has a weakly converging subsequence {x,,} and
every weak hmut x of {x 1 satisties, Afw)=yp
Rixy )= Riwj)and Afxy ) — ¥

(m)  Assumc that the problem has a solution and suppose

l].-—y"’laa,‘ — 0,
EI
o, B, 20 —=0

Then the sequence {x;: t has a subsequence {x; } converging strongly 1o a

w such that |, Afw)=y, Rfx, )= Riw), and Afx, ) > y. Morcover

(w,p(w) 18 a (x* R{x*))-m.ns.
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Proof: Part 1. Let 1 li‘li. solution of the problem (P, L)« then

E # 2
A — :‘L‘
P'-'-u gL ':,'

Af xq} " J j.:-'IZ +a

+ﬁHRr,\f:_Bﬂ !I!r

< IA(.T_)-}-‘*IZ +U.|J:— _r*lz +fi|1H.f_vJ";_

forall x e Dy R ).
lel x, € 1) R) such that Afx, j= v . Then

¥

? . e

]| r““”" - le_ +on, I']ﬂ::-ff-n - *“A’
2

' HH“a n’ H

< ||/T|’xa )— " I; +a, I:ro

+B, |7 x, (9

2 2
nd Y
£8 +a, Hl" X I  Th.

Since the sequence {{-"ﬁ:ih‘ ' J 4:’-'1{" J)} 1s bounded in
; il & _ \
¥ o« X % ¥, there 1s a subsequence ¥ n"k ook § of 9%, 5 | such that
Sk LA W

2k Pk

Ry Aﬂ’:k Ea J—= 3 Rf w )}

.-'” X

o ] AW

A5,

According 1o (3) we have that )—.}’Eu* U and therefore
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Af xu” e ) =Y as n— o Since A is weakly closed we have y = Fyw).

Also for (3) we have that

b
xin —-1‘12 <—E"- +ﬂx —j:*ﬂ:
Gy By Y o o P
n
o
H
Then
I 3 4
n Y 4;' - i[‘
lim Irﬂ_"h x*| s %, = x*[; -

Therefore wisa x* moans. replacing x, for w inthe last inequality we
have that

P
A

2
—x SIW*—I*N
nﬂh III

This implies that x* . ——>w and clearly A(x,

ok Prsk J— Af w) and

Unkpnk

R{x;':;.ﬂﬁ* J—>R(w),

The proof of Part 2 Using part ol the part 1 we have that

"R(u)if‘hmuﬁf 1%" B ﬂ

< :'unllh'(x - )||

2 £, . ]
<lim 2y e x, = x| H|[R w)

= 1R;'wju
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'This implies that R( x;:ﬂ" ) > R{w) and Af xﬁ‘:_ﬁr )=

The parl 3 1s proved in the similar way as part 2.

Theorem 4: (Rate of Convergence). Let's suppose “y-y“lls. € and
A(x,)=y and there is 1 such that A w=x¥-x,+R*v, where
v=wy*-R(x,) . Taking a =B =8 we have that

% = x| =)
Proof: Taking x=x, and ‘ly—y"“{ £,

2 2
T -y X
|zf(1u,l ¥ |z +mn:a.m“| X “

+BNR1‘ X, )W “Ij
< ",4r’ X, )= Jf‘clj_ +afx, - x “ui
BlRix, ) -y,

<g + o'.]lx,, —x*“i - ﬁlH(xa J— w*“:,

X

Since

ra =5 =l = wf 4 -0
-2x, —X.X*—X, )
and
IRx, - wH
=|Rrx, )= Rtz +|Rex, ) w;
=2(R{ 1, )= R( X ) Ww* =R(x, )
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we have

¥

“,4 (x, )— y"; +ax, - ra“_‘x

*“er"*‘un )-R(x, )|’
<5 + 20 X =X X=Xy}
+20( R(x, )~ R(xo Jw*—Ri(xy)
=g 4 2u( X, =Xy X*=X, )
+2u(R(x, — x5 ).v)

=g +20(X, — X5, X * =%, )
+2afx, —x, R*v)

=g’ + 20X, — X5, x¥—x, +R*v)

=g + 20 x, =5, A% 1)

=g +20( Arx, — xo J.u)

=’ + 20 Afx, )= )

<g’ +2al4rx, ) .

Using the property of the real numbers_ it ;7 < % 4 ,pwith a b.c > 0. then

ash+c,
we have that

l4rx, - luz <& + 2|4 x, - il
Then

uzfi’,‘»“ J=y , 5:51“2(1'!.\.“

From the last estimate we have that

alfr, -, < s+ 20 ?
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Then

+2
l.:r“ —Ia'z SS—%-- 9 )

-4 Numerical Examples In this section we present some applications
to some Fredholm equations of first kind using the regularization Tikhonov
technique of two regulanization parameters o, > 0. We will add 2 %o ran-

dom normal-distribution error to the exact data (to simulate the measure-
ment errors), we find the approximated solution. We describe some exam-

ples and report the error in L, for a particular selection of values for the

parameters « and [§. We select, for cach example, the best values for these
parameters, the ones that resull in the smallest solution error. In the figures,
we have the exact solution, and we show the optimal o and [} as well as
the reconstructed images obtaimed using these optimal parameters.

Example 1. Considerer the Fredholm equations of first kind given by
1
(Ac)(s)=fk(s—x0)dt=g(s) g<yey.
0

where the kernel i< the convolution type kfs.t )= k{s-t),with

1
o

kit)= exp(—(t—=h/2)/ ")
n

and =005 and h=0.0125. We will apply the method of two param-
eters by discretization the linear inverse problem the equation reducing
the problem to finite dimension by solving the lincar problem. The solu-
ttons that depend of the parameters are given by

A—;ﬁ =(A¥A+al +BB*B) A*b
‘The operator of Regularization is given hy

2 -1
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Nee ligure |
Example2. We consider in this case the kemel gaven by

bist)=(coss+cost)/fsenu/u)
with & = nf sen s+ sent)

where the exact solubion 1s
x(t)
= 2exp(6(-n/2 + 1t -8))
+oexp(-2(-n/2 + t =5)")
and the exact data is

o(s) ~ 2exp(-6(s - 8)" ) + expf-2s ~5)")
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Figure 2. o - 0.00005, p=0.001 srror=0.0465 rel_emor-0.0185
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