
Resumen

El método de fracciones continuas provee la menor solución entera no trivial de la 
ecuación de Pell. Dicha solución se expresa en términos del convergente de la fracción 
continua de la raíz cuadrada de un número entero no cuadrado al final de su primer o 
segundo período. En este trabajo, se obtiene que este convergente a su vez se expresa 
en términos de otro convergente de menor orden de la misma fracción continua.
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Solving Pell’s Equation by Lower - Order Convergents

Abstract

The method of continued fractions provides the smallest non-trivial integer solution 
of Pell’s equation. This solution comes from the convergent of the continued fraction 
of the square root of an integer number that is not a square at the end of its first or its 
second period. In this work, it is obtained that this convergent is expressed in terms of 
a lower-order convergent of the same continued fraction.
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1.	 Introduction

The resolution of generalized Pell’s equation

				    					   
(1)

where m  and  n are integers and n is not a square, makes use of algorithms that involve many 
calculations. Due to the  development of computers, this subject has become recently a topic of 

interest. It is known that all the integer solutions    for Equation (1) are derived from the 
recursion formula (see [1])

		  			 
(2)

where   is the smallest integer solution of Equation (1) and  (α, β) is the smallest 
non-trivial integer solution of Pell’s equation

				     					   
(3)

Integer solutions of Pell’s equation (3) are determined by the convergents of the continued 
fraction of the irrational number  all these elements having interesting properties (Sections 
3 and 4). In fact, the coordinates  of the smallest non-trivial integer solution of Pell’s 

equation (3) are determined by a specific convergent  of the mentioned continued fraction 
(Theorem 5.1). 

However, the way how convergents of continued fractions are defined requires that all the 
previous ones be calculated to reach the solution.

In this work, an oriented parametrization for the rational points of the hyperbola 

  is constructed in Section 2, and is used to relate the convergent  that solves 

Pell’s equation (3) with a convergent  of lower order. We use classic properties of continued 
fractions and convergents to establish the main result Theorem 5.2 in Section 5, which in turn 
derives in expressions for each coordinate of the smallest non-trivial integer solution of Pell’s 
equation (3) in terms of the same lower-order convergents in Proposition 5.3.
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2.	 Rational Numbers as Rational Points of a Hyperbola

For real numbers {x, y, k, q, n} , there is an identity

When taking (k, q) = (x, y), Brahmagupta’s identity takes the form

		      			 
(4)

Then

		             			 

(5)

and the ordered pair

			   				  

(6)

is a rational solution of Pell’s equation (3) when k and q are integers and n is a natural 
number that is not a square. It is found an inclusion of the set Q of rational numbers in the 

hyperbola H:ny2  –  x2=–1 as described in the following statement.

Proposition 2.1. Let  be a natural number that is not a square. There is a bijection 

between the set  of extended rational numbers and the points of the hyperbola 

H:ny2  –  x2=–1 that have both entries rational.

Proof. The function  is defined as

     			               

(7)

If we write , then

				    				                

(8)

;
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To prove that f is injective, let us take rational numbers α and β such that f (α) =  f  (β).
Then

				    					   

(9)

and

				    					   
(10)

Equation (9) leads to α2 = β2 and then Equation (10) leads to α = β. Then the function f 
is injective.

To prove surjection, let us consider a point  with both entries rational. Then x 
and y are rational numbers such that ny2–x2=–1 . Let us consider the extended rational number

					     						    
(11)

Then

				    				  

(12)

and we reach that
	

					     		           			 

(13)

and
		

					     				       	

(14)
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Therefore,

				    				  
(15)

and there is a bijection between the set  of extended rational numbers and the 
points of the hyperbola H:ny2 – x2 = –1 with both entries rational. 

The bijection  provides an orientation for the hyperbola H:ny2 – 
x2 = –1 induced by the usual ordering of rational numbers as displayed in Figure 1: starting at 

the vertex  corresponding to , the rational point  gets closer to the line 

 in the second quadrant of the plane while  is increasing and keeping lower 

than  Once , the rational point  jumps to the fourth quadrant arbitrarily 
close to the same asymptote and begins to reach the vertex (1,0) which corresponds to

. When  begins to be positive, the rational point  continues its way on the 

first quadrant getting closer to the line  the 

rational point  jumps to the third quadrant arbitrarily close to the same asymptote and 

goes back to the vertex 

Let us recall a basic property of hyperbolas.
Remark 2.2. If  (x, y) and (ax, ay) are points of the hyperbola 

3.	 Continued Fractions of Square Roots of Natural Numbers

To find integer solutions of Pell’s equation (3), it is sufficient to find integers k and q such 
that nq2 – k2 divides both nq2 + k2 and 2kq according to Proposition 2.1. Therefore, the pair 
(k, q) must be chosen so that nq2 – k2  be sufficiently small. A method for obtaining such 

suitable values for k and q is by approximating the irrational number  via continued 
fractions. A continued fraction is an expression of the form

			   			 

(16)

where each ai is an integer number and ai > 0 when i >0. For example, let us calculate the 

continued fraction for  it is known that 3 <  a < 4 ; moreover, a2 –32 = 4. Then 

α  – 3 =   and it follows that
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For the case of the square root of a positive integer number, its continued fraction is periodic 

with the number  being the last element in the period. Furthermore, the remaining 

elements in the period have a symmetric behavior as observed in 
then, ap–i = ai for every 0 < i < p . It follows that   is a continued fraction with 
period of length p = 5 . We could test the pair (k, q) = (72, 20) coming from the polynomial 

expression 20a – 72  in the continued fraction of  obtaining the value 13 . 202 –722 = 16, and 
so the values for  x and  y would be
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Figure 1. Rational points of the hyperbola 3y2 – x2= –1 regarded as extended rational numbers.
											         

			          			
(17)

										        

and 

			   				 
(18)

which is the smallest non-trivial integer solution of Pell’s equation 13y2 – x2 = –1.
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4.	 Review on Convergents

For any continued fraction  , its -th convergent   is defined inductively by making,  

The i-th convergent  can be calculated alternatively as the finite continued fraction

					     				  
(19)

In fact, it is proved (see [2]) that

			   				  
(20)

for every positive real number  a.

Other properties of interest with respect to convergents are the associativity

		  			 
(21)

the reduction

		  			 
(22)

the inversion

				    				  
(23)

the difference

				    				  
(24)

and the monotonicity

        

(25)
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We are proving inversion property (23) as follows: if i = 1, then q-1 = 0, q0 = 1, and

				    				              
(26)

following that

				       				              
(27)

Now, let us suppose that inversion property (23) holds for i and let us calculate

             

 

Then inversion property (23) holds for i + 1 and it holds for every positive integer i.

We use monotonicity property (25) to locate the image of the convergents via the 
parametrization f from Proposition 2.1.v

Lemma 4.1. Let n be a natural number that is not a square and let us consider the 

continued fraction of  with convergents  If  is odd, then the point f  belongs to the 

third quadrant. If  is even, then the point f   belongs to the first quadrant.

Proof. If i is odd, then   and the rational point

			 

has both entries negative.

If i is even, then   and the rational point

   			 

has both entries positive. 

R
es

ol
vi

en
d

o 
la

 E
cu

ac
ió

n 
d

e 
Pe

ll 
co

n 
C

on
ve

rg
en

te
s 

d
e 

O
rd

en
 In

fe
ri

or
 

So
lv

in
g

 P
el

l’s
 E

q
ua

ti
on

 b
y 

Lo
w

er
-O

rd
er

 C
on

ve
rg

en
ts

a



10

5. The Result 

The smallest non-trivial integer solution of Pell's equation (3) has been calculated in terms of 

the convergents of the continued fraction of √𝑛𝑛 as proved by C. D. Olds in [2]: 

Theorem 5.1. Let 𝑛𝑛 be a natural number that is not a square and let us consider the 

continued fraction √𝑛𝑛 = [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, 2𝑎𝑎0] with period of length 𝑝𝑝 and its convergents 𝑘𝑘𝑖𝑖
𝑞𝑞𝑖𝑖

. If 𝑝𝑝 

is even, then the pair (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) = (𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) is the first non-trivial integer solution of 𝑛𝑛𝑦𝑦2 −

𝑥𝑥2 = −1. If 𝑝𝑝 is odd, then the pair (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) = (𝑘𝑘2𝑝𝑝−1, 𝑞𝑞2𝑝𝑝−1) is the first non-trivial integer 

solution of 𝑛𝑛𝑦𝑦2 − 𝑥𝑥2 = −1. Also, the equality 𝑛𝑛𝑞𝑞𝑝𝑝−1
2 − 𝑘𝑘𝑝𝑝−1

2 = (−1)𝑝𝑝−1 holds for any length 𝑝𝑝. 

Let us calculate the first non-trivial integer solution of Pell's equation 13𝑦𝑦2 − 𝑥𝑥2 = −1 by 

using Theorem 5.1: since the length 𝑝𝑝 of the period of the continued fraction √13 =
[3; 1, 1, 1, 1, 6] is 𝑝𝑝 = 5, Theorem 5.1 commands us to calculate the pair (𝑘𝑘2⋅5−1, 𝑞𝑞2⋅5−1) = (𝑘𝑘9, 𝑞𝑞9). 

We proceed by making: 

(𝑘𝑘1, 𝑞𝑞1) = (1 ⋅ 3 + 1, 1 ⋅ 1 + 0)  =  (4, 1) (𝑘𝑘2, 𝑞𝑞2) = (1 ⋅ 4 + 3, 1 ⋅ 1 + 1)  =  (7, 2) (𝑘𝑘3, 𝑞𝑞3)
= (1 ⋅ 7 + 4, 1 ⋅ 2 + 1)  =  (11, 3) (𝑘𝑘4, 𝑞𝑞4) = (1 ⋅ 11 + 7, 1 ⋅ 3 + 2)  =  (18, 5) (𝑘𝑘5, 𝑞𝑞5)
= (6 ⋅ 18 + 11, 6 ⋅ 5 + 3)  =  (119, 33) (𝑘𝑘6, 𝑞𝑞6) = (1 ⋅ 119 + 18, 1 ⋅ 33 + 5)  
=  (137, 38) (𝑘𝑘7, 𝑞𝑞7) = (1 ⋅ 137 + 119, 1 ⋅ 38 + 33)  =  (256, 71) (𝑘𝑘8, 𝑞𝑞8)
= (1 ⋅ 256 + 137, 1 ⋅ 71 + 38)  =  (393, 109) (𝑘𝑘9, 𝑞𝑞9)
= (1 ⋅ 393 + 256, 1 ⋅ 109 + 71)  =  (649, 180).  

The pair (𝑘𝑘9, 𝑞𝑞9) = (649, 180) is the smallest non-trivial integer solution of Pell's equation 

13𝑦𝑦2 − 𝑥𝑥2 = −1. However, we may pay attention to the convergent 𝑘𝑘4
𝑞𝑞4

= 18
5  and we calculate 

𝑓𝑓 (𝑘𝑘4
𝑞𝑞4

)  =  𝑓𝑓 (18
5 )   =  (13 ⋅ 52 + 182

13 ⋅ 52 − 182 , 2 ⋅ 18 ⋅ 5
13 ⋅ 52 − 182)   =  (649, 180)   =  (𝑘𝑘9, 𝑞𝑞9).  

For the even case, let us consider the continued fraction 

 √1986 = [44; 1, 1, 3, 2, 1, 2, 5, 1, 1, 3, 44, 3, 1, 1, 5, 2, 1, 2, 3, 1, 1, 88] (28) 

which has a period of length 𝑝𝑝 = 22. According to Theorem 5.1, the first non-trivial integer 

solution of Pell's equation 1986𝑦𝑦2 − 𝑥𝑥2 = −1 is (𝑘𝑘22−1, 𝑞𝑞22−1) = (𝑘𝑘21, 𝑞𝑞21) =
(13209364625, 296409628), but we can also calculate 

𝑓𝑓−1(𝑘𝑘21, 𝑞𝑞21)  =  𝑓𝑓−1(13209364625, 296409628)   =  1986 ⋅ 296409628
13209364625 + 1   =  114932

2579   =  𝑘𝑘10
𝑞𝑞10

.  

The bijection 𝑓𝑓: 𝑄𝑄 ∪ {∞} → 𝐻𝐻 ∩ (𝑄𝑄 × 𝑄𝑄) from Proposition 2.1 establishes a connection 

between the smallest non-trivial integer solution of Pell's equation (3) and a convergent of 

lower order. We prove the relation in the following statement: 

Theorem 5.2. Let 𝑛𝑛 be a natural number that is not a square and let us consider the 

continued fraction 
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= (6 ⋅ 18 + 11, 6 ⋅ 5 + 3)  =  (119, 33) (𝑘𝑘6, 𝑞𝑞6) = (1 ⋅ 119 + 18, 1 ⋅ 33 + 5)  
=  (137, 38) (𝑘𝑘7, 𝑞𝑞7) = (1 ⋅ 137 + 119, 1 ⋅ 38 + 33)  =  (256, 71) (𝑘𝑘8, 𝑞𝑞8)
= (1 ⋅ 256 + 137, 1 ⋅ 71 + 38)  =  (393, 109) (𝑘𝑘9, 𝑞𝑞9)
= (1 ⋅ 393 + 256, 1 ⋅ 109 + 71)  =  (649, 180).  

The pair (𝑘𝑘9, 𝑞𝑞9) = (649, 180) is the smallest non-trivial integer solution of Pell's equation 

13𝑦𝑦2 − 𝑥𝑥2 = −1. However, we may pay attention to the convergent 𝑘𝑘4
𝑞𝑞4

= 18
5  and we calculate 

𝑓𝑓 (𝑘𝑘4
𝑞𝑞4

)  =  𝑓𝑓 (18
5 )   =  (13 ⋅ 52 + 182

13 ⋅ 52 − 182 , 2 ⋅ 18 ⋅ 5
13 ⋅ 52 − 182)   =  (649, 180)   =  (𝑘𝑘9, 𝑞𝑞9).  

For the even case, let us consider the continued fraction 

 √1986 = [44; 1, 1, 3, 2, 1, 2, 5, 1, 1, 3, 44, 3, 1, 1, 5, 2, 1, 2, 3, 1, 1, 88] (28) 

which has a period of length 𝑝𝑝 = 22. According to Theorem 5.1, the first non-trivial integer 

solution of Pell's equation 1986𝑦𝑦2 − 𝑥𝑥2 = −1 is (𝑘𝑘22−1, 𝑞𝑞22−1) = (𝑘𝑘21, 𝑞𝑞21) =
(13209364625, 296409628), but we can also calculate 

𝑓𝑓−1(𝑘𝑘21, 𝑞𝑞21)  =  𝑓𝑓−1(13209364625, 296409628)   =  1986 ⋅ 296409628
13209364625 + 1   =  114932

2579   =  𝑘𝑘10
𝑞𝑞10

.  

The bijection 𝑓𝑓: 𝑄𝑄 ∪ {∞} → 𝐻𝐻 ∩ (𝑄𝑄 × 𝑄𝑄) from Proposition 2.1 establishes a connection 

between the smallest non-trivial integer solution of Pell's equation (3) and a convergent of 

lower order. We prove the relation in the following statement: 

Theorem 5.2. Let 𝑛𝑛 be a natural number that is not a square and let us consider the 

continued fraction 

 √𝑛𝑛 = [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, 2𝑎𝑎0] (29) 

with period of length 𝑝𝑝 and its convergents 𝑘𝑘𝑖𝑖
𝑞𝑞𝑖𝑖

. If 𝑝𝑝 is even, then 

 𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
=

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

. (30) 

 

If 𝑝𝑝 is odd, then 

 𝑛𝑛𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1

2

2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
=

𝑘𝑘2𝑝𝑝−1
𝑞𝑞2𝑝𝑝−1

. (31) 

 

Proof. Let us suppose that the length 𝑝𝑝 of the period is odd and let us observe that 

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

 =  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1]   =  [𝑎𝑎0; 𝑎𝑎𝑝𝑝−1, … , 𝑎𝑎1]   =  [𝑎𝑎0; [𝑎𝑎𝑝𝑝−1; … , 𝑎𝑎1]]   =  [𝑎𝑎0;
𝑞𝑞𝑝𝑝−1
𝑞𝑞𝑝𝑝−2

]   =  𝑎𝑎0 +
𝑞𝑞𝑝𝑝−2
𝑞𝑞𝑝𝑝−1

.  

Then 𝑘𝑘𝑝𝑝−1 = 𝑎𝑎0𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2, leading to 2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 = 𝑎𝑎0𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1 and 

 1
2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1

= 1
𝑎𝑎0𝑞𝑞𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1
. (32) 

 

Since 𝑝𝑝 is odd, it follows that (−1)𝑝𝑝−1 = 1 and the pair (𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) is a solution of the 

equation 𝑛𝑛𝑦𝑦2 − 𝑥𝑥2 = 1 by Theorem 5.1. Then 

𝑛𝑛𝑞𝑞𝑝𝑝−1
2 − 𝑘𝑘𝑝𝑝−1

2

2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
 =  

(−1)𝑝𝑝−1

𝑎𝑎0𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1

  =  
𝑘𝑘𝑝𝑝−2𝑞𝑞𝑝𝑝−1 − 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−2

𝑎𝑎0𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1

  

=  
𝑎𝑎0𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−1
2 𝑞𝑞𝑝𝑝−1 + 𝑘𝑘𝑝𝑝−2𝑞𝑞𝑝𝑝−1

2 − 𝑎𝑎0𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
2 − 𝑘𝑘𝑝𝑝−1

2 𝑞𝑞𝑝𝑝−1 − 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1
𝑞𝑞𝑝𝑝−1(𝑎𝑎0𝑞𝑞𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1)
  

=  
𝑞𝑞𝑝𝑝−1(𝑎𝑎0𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑘𝑘𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−2𝑞𝑞𝑝𝑝−1) − 𝑘𝑘𝑝𝑝−1(𝑎𝑎0𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1)

𝑞𝑞𝑝𝑝−1(𝑎𝑎0𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1)

  

=  
𝑎𝑎0𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑘𝑘𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−2𝑞𝑞𝑝𝑝−1
𝑎𝑎0𝑞𝑞𝑝𝑝−1

2 + 𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2𝑞𝑞𝑝𝑝−1
−

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  =  
(𝑎𝑎0 + 𝑘𝑘𝑝𝑝−1

𝑞𝑞𝑝𝑝−1
) 𝑘𝑘𝑝𝑝−1 + 𝑘𝑘𝑝𝑝−2

(𝑎𝑎0 + 𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

) 𝑞𝑞𝑝𝑝−1 + 𝑞𝑞𝑝𝑝−2

−
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  

=  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, 𝑎𝑎0 +
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

] −
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  =  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, 𝑎𝑎0 + [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1]] −
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  

=  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, [2𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1]] −
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  =  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1, 2𝑎𝑎0, 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1] −
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

  

=  
𝑘𝑘2𝑝𝑝−1
𝑞𝑞2𝑝𝑝−1

−
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

.  

It follows that 

 𝑛𝑛𝑞𝑞𝑝𝑝−1
2 − 𝑘𝑘𝑝𝑝−1

2

2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
+

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

=
𝑘𝑘2𝑝𝑝−1
𝑞𝑞2𝑝𝑝−1

, (33) 
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and it is concluded that 

 𝑛𝑛𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1

2

2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
=

𝑘𝑘2𝑝𝑝−1
𝑞𝑞2𝑝𝑝−1

, (34) 

if the length 𝑝𝑝 is odd. 

If the length 𝑝𝑝 is even, P. J. Rippon and H. Taylor proved in [3] that there is an identity 

 

𝑛𝑛 =
𝑘𝑘𝑝𝑝

2−1 (𝑘𝑘𝑝𝑝
2

+ 𝑘𝑘𝑝𝑝
2−2)

𝑞𝑞𝑝𝑝
2−1 (𝑞𝑞𝑝𝑝

2
+ 𝑞𝑞𝑝𝑝

2−2)
. (35) 

 

Then 

𝑛𝑛 =  
𝑘𝑘𝑝𝑝

2−1𝑘𝑘𝑝𝑝
2

+ 𝑘𝑘𝑝𝑝
2−2𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2
+ 𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

  =  
𝑘𝑘𝑝𝑝

2−1 (𝑎𝑎𝑝𝑝
2

𝑘𝑘𝑝𝑝
2−1 + 𝑘𝑘𝑝𝑝

2−2) + 𝑘𝑘𝑝𝑝
2−2𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1 (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1 + 𝑞𝑞𝑝𝑝
2−2) + 𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

,  

and we obtain 

 𝑛𝑛 (𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1) = 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 + 2𝑘𝑘𝑝𝑝

2−2𝑘𝑘𝑝𝑝
2−1. (36) 

 

Then 

 𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 = 2𝑘𝑘𝑝𝑝

2−2𝑘𝑘𝑝𝑝
2−1. (37) 

 

We multiply by 𝑞𝑞𝑝𝑝
2−1 to obtain 

𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
3 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1
2 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 𝑞𝑞𝑝𝑝

2−1  =  2𝑘𝑘𝑝𝑝
2−1𝑘𝑘𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1   =  2𝑘𝑘𝑝𝑝

2−1 (𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−2 + (−1)
𝑝𝑝
2−1),  

leading to 

 𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
3 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1
2 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 𝑞𝑞𝑝𝑝

2−1 − 2𝑘𝑘𝑝𝑝
2−1
2 𝑞𝑞𝑝𝑝

2−2 = (−1)
𝑝𝑝
2−12𝑘𝑘𝑝𝑝

2−1, (38) 

and 

 (𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ) (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1 + 2𝑞𝑞𝑝𝑝
2−2) = (−1)

𝑝𝑝
2−12𝑘𝑘𝑝𝑝

2−1. (39) 

 

Therefore, it follows that 

 𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
=

(−1)
𝑝𝑝
2−1

𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

. (40) 

 

If we use again the difference property (24), we get 

Revista de Ciencias Volumen 28 N. 1
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and it is concluded that 

 𝑛𝑛𝑞𝑞𝑝𝑝−1
2 + 𝑘𝑘𝑝𝑝−1

2

2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1
=

𝑘𝑘2𝑝𝑝−1
𝑞𝑞2𝑝𝑝−1

, (34) 

if the length 𝑝𝑝 is odd. 

If the length 𝑝𝑝 is even, P. J. Rippon and H. Taylor proved in [3] that there is an identity 

 

𝑛𝑛 =
𝑘𝑘𝑝𝑝

2−1 (𝑘𝑘𝑝𝑝
2

+ 𝑘𝑘𝑝𝑝
2−2)

𝑞𝑞𝑝𝑝
2−1 (𝑞𝑞𝑝𝑝

2
+ 𝑞𝑞𝑝𝑝

2−2)
. (35) 

 

Then 

𝑛𝑛 =  
𝑘𝑘𝑝𝑝

2−1𝑘𝑘𝑝𝑝
2

+ 𝑘𝑘𝑝𝑝
2−2𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2
+ 𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

  =  
𝑘𝑘𝑝𝑝

2−1 (𝑎𝑎𝑝𝑝
2

𝑘𝑘𝑝𝑝
2−1 + 𝑘𝑘𝑝𝑝

2−2) + 𝑘𝑘𝑝𝑝
2−2𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1 (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1 + 𝑞𝑞𝑝𝑝
2−2) + 𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

,  

and we obtain 

 𝑛𝑛 (𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1) = 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 + 2𝑘𝑘𝑝𝑝

2−2𝑘𝑘𝑝𝑝
2−1. (36) 

 

Then 

 𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 = 2𝑘𝑘𝑝𝑝

2−2𝑘𝑘𝑝𝑝
2−1. (37) 

 

We multiply by 𝑞𝑞𝑝𝑝
2−1 to obtain 

𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
3 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1
2 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 𝑞𝑞𝑝𝑝

2−1  =  2𝑘𝑘𝑝𝑝
2−1𝑘𝑘𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1   =  2𝑘𝑘𝑝𝑝

2−1 (𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−2 + (−1)
𝑝𝑝
2−1),  

leading to 

 𝑛𝑛𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
3 + 2𝑛𝑛𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1
2 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1
2 𝑞𝑞𝑝𝑝

2−1 − 2𝑘𝑘𝑝𝑝
2−1
2 𝑞𝑞𝑝𝑝

2−2 = (−1)
𝑝𝑝
2−12𝑘𝑘𝑝𝑝

2−1, (38) 

and 

 (𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ) (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1 + 2𝑞𝑞𝑝𝑝
2−2) = (−1)

𝑝𝑝
2−12𝑘𝑘𝑝𝑝

2−1. (39) 

 

Therefore, it follows that 

 𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
=

(−1)
𝑝𝑝
2−1

𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

. (40) 

 

If we use again the difference property (24), we get 

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
 =  

𝑘𝑘𝑝𝑝
2−2𝑞𝑞𝑝𝑝

2−1 − 𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−2

𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

  =  
𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−2 + 𝑘𝑘𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1 − 2𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−2

𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

  

=  
𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−1
2 + 𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−2𝑞𝑞𝑝𝑝

2−1 + 𝑘𝑘𝑝𝑝
2−2𝑞𝑞𝑝𝑝

2−1
2 − 𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−1
2 − 2𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−2𝑞𝑞𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1 (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1)

  

=  
𝑞𝑞𝑝𝑝

2−1 (𝑎𝑎𝑝𝑝
2

𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1 + 𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−2 + 𝑘𝑘𝑝𝑝
2−2𝑞𝑞𝑝𝑝

2−1) − 𝑘𝑘𝑝𝑝
2−1 (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1)

𝑞𝑞𝑝𝑝
2−1 (𝑎𝑎𝑝𝑝

2
𝑞𝑞𝑝𝑝

2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1)

  

=  
𝑎𝑎𝑝𝑝

2
𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−1 + 𝑘𝑘𝑝𝑝

2−1𝑞𝑞𝑝𝑝
2−2 + 𝑘𝑘𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

𝑎𝑎𝑝𝑝
2

𝑞𝑞𝑝𝑝
2−1
2 + 2𝑞𝑞𝑝𝑝

2−2𝑞𝑞𝑝𝑝
2−1

−
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  

=  
(𝑎𝑎𝑝𝑝

2
+

𝑞𝑞𝑝𝑝
2−2

𝑞𝑞𝑝𝑝
2−1

) 𝑘𝑘𝑝𝑝
2−1 + 𝑘𝑘𝑝𝑝

2−2

(𝑎𝑎𝑝𝑝
2

+
𝑞𝑞𝑝𝑝

2−2
𝑞𝑞𝑝𝑝

2−1
) 𝑞𝑞𝑝𝑝

2−1 + 𝑞𝑞𝑝𝑝
2−2

−
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  =  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝
2−1, 𝑎𝑎𝑝𝑝

2
+

𝑞𝑞𝑝𝑝
2−2

𝑞𝑞𝑝𝑝
2−1

] −
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  

=  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝
2−1, 𝑎𝑎𝑝𝑝

2
,
𝑞𝑞𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−2

] −
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  =  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝
2−1, 𝑎𝑎𝑝𝑝

2
, 𝑎𝑎𝑝𝑝

2−1, … , 𝑎𝑎1] −
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  

=  [𝑎𝑎0; 𝑎𝑎1, … , 𝑎𝑎𝑝𝑝−1] −
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

  =  
𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

−
𝑘𝑘𝑝𝑝

2−1

𝑞𝑞𝑝𝑝
2−1

.  

We conclude that 

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

 =  
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
+

𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

  =  
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

2𝑘𝑘𝑝𝑝
2−1𝑞𝑞𝑝𝑝

2−1
,  

when the length 𝑝𝑝 is even and the statement follows. ∎ 

For example, let us consider Pell's equation 4729494𝑦𝑦2 − 𝑥𝑥2 = −1 that appears when solving 

Archimedes's cattle problem. The continued fraction of √4729494 has period with length 𝑝𝑝 =
92. By Theorem 5.1, the first non-trivial integer solution of this equation is (𝑘𝑘91, 𝑞𝑞91), which 

would demand to calculate 91 convergents 𝑘𝑘𝑖𝑖
𝑞𝑞𝑖𝑖

. However, by Theorem 5.2, it follows that 

 4729494𝑞𝑞45
2 + 𝑘𝑘45

2

2𝑘𝑘45𝑞𝑞45
= 𝑘𝑘91

𝑞𝑞91
, (41) 

so, it is only required to calculate the first 45 convergents when using the method of continued 

fractions to obtain the solution. 

Let us take another look to Theorem 5.2: it states that the point 𝑓𝑓 (𝑘𝑘∗
𝑞𝑞∗

) = (𝑛𝑛𝑞𝑞∗2+𝑘𝑘∗2

𝑛𝑛𝑞𝑞∗2−𝑘𝑘∗2
, 2𝑘𝑘∗𝑞𝑞∗

𝑛𝑛𝑞𝑞∗2−𝑘𝑘∗2
) is 

proportional to the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation (3). By 

Remark 2.2, it follows that 

R
es

ol
vi

en
d

o 
la

 E
cu

ac
ió

n 
d

e 
Pe

ll 
co

n 
C

on
ve

rg
en

te
s 

d
e 

O
rd

en
 In

fe
ri

or
 

So
lv

in
g

 P
el

l’s
 E

q
ua

ti
on

 b
y 

Lo
w

er
-O

rd
er

 C
on

ve
rg

en
ts

a



14

 
(𝑛𝑛𝑞𝑞∗

2 + 𝑘𝑘∗2
𝑛𝑛𝑞𝑞∗2 − 𝑘𝑘∗2

, 2𝑘𝑘∗𝑞𝑞∗
𝑛𝑛𝑞𝑞∗2 − 𝑘𝑘∗2

) = (±𝑘𝑘𝑠𝑠, ±𝑞𝑞𝑠𝑠). (42) 

 

Therefore, we can express the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 

(3) fully in terms of the lower-order convergent 𝑘𝑘∗𝑞𝑞∗
 as follows: 

Proposition 5.3. Let 𝑛𝑛 be a natural number that is not a square and let us consider the 

continued fraction of √𝑛𝑛 with period of length 𝑝𝑝 and convergents 𝑘𝑘𝑖𝑖𝑞𝑞𝑖𝑖
. 

(1) If 𝑝𝑝 is odd, then the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 𝑛𝑛𝑦𝑦2 −
𝑥𝑥2 = −1 is 

 (𝑘𝑘2𝑝𝑝−1, 𝑞𝑞2𝑝𝑝−1) = (𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12 , 2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1). (43) 

 

(2) If 𝑝𝑝 is even, then the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 𝑛𝑛𝑦𝑦2 −
𝑥𝑥2 = −1 is 

 
(𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) = (

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ), (44) 

 

if 𝑝𝑝2 is odd, and is 

 
(𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) = (

𝑘𝑘𝑝𝑝
2−1
2 + 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2

𝑘𝑘𝑝𝑝
2−1
2 − 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑘𝑘𝑝𝑝
2−1
2 − 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 ), (45) 

 

if 𝑝𝑝2 is even. 

Proof. If the length 𝑝𝑝 is odd, Theorem 5.1 guarantees that 

 𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 = (−1)𝑝𝑝−1 = 1, (46) 

so that the rational point 

 
𝑓𝑓 (

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

) = (
𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12

𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 ,
2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1

𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 ) = (𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12 , 2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1) (47) 

has positive entries and then Equation (43) follows. 

On the other hand, if 𝑝𝑝 is even, it follows from Theorem 5.2 and Remark 2.2 that 

 
(
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ) = (±𝑘𝑘𝑝𝑝−1,±𝑞𝑞𝑝𝑝−1), (48) 
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(𝑛𝑛𝑞𝑞∗

2 + 𝑘𝑘∗2
𝑛𝑛𝑞𝑞∗2 − 𝑘𝑘∗2

, 2𝑘𝑘∗𝑞𝑞∗
𝑛𝑛𝑞𝑞∗2 − 𝑘𝑘∗2

) = (±𝑘𝑘𝑠𝑠, ±𝑞𝑞𝑠𝑠). (42) 

 

Therefore, we can express the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 

(3) fully in terms of the lower-order convergent 𝑘𝑘∗𝑞𝑞∗
 as follows: 

Proposition 5.3. Let 𝑛𝑛 be a natural number that is not a square and let us consider the 

continued fraction of √𝑛𝑛 with period of length 𝑝𝑝 and convergents 𝑘𝑘𝑖𝑖𝑞𝑞𝑖𝑖
. 

(1) If 𝑝𝑝 is odd, then the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 𝑛𝑛𝑦𝑦2 −
𝑥𝑥2 = −1 is 

 (𝑘𝑘2𝑝𝑝−1, 𝑞𝑞2𝑝𝑝−1) = (𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12 , 2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1). (43) 

 

(2) If 𝑝𝑝 is even, then the smallest non-trivial integer solution (𝑘𝑘𝑠𝑠, 𝑞𝑞𝑠𝑠) of Pell's equation 𝑛𝑛𝑦𝑦2 −
𝑥𝑥2 = −1 is 

 
(𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) = (

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ), (44) 

 

if 𝑝𝑝2 is odd, and is 

 
(𝑘𝑘𝑝𝑝−1, 𝑞𝑞𝑝𝑝−1) = (

𝑘𝑘𝑝𝑝
2−1
2 + 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2

𝑘𝑘𝑝𝑝
2−1
2 − 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑘𝑘𝑝𝑝
2−1
2 − 𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 ), (45) 

 

if 𝑝𝑝2 is even. 

Proof. If the length 𝑝𝑝 is odd, Theorem 5.1 guarantees that 

 𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 = (−1)𝑝𝑝−1 = 1, (46) 

so that the rational point 

 
𝑓𝑓 (

𝑘𝑘𝑝𝑝−1
𝑞𝑞𝑝𝑝−1

) = (
𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12

𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 ,
2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1

𝑛𝑛𝑞𝑞𝑝𝑝−12 − 𝑘𝑘𝑝𝑝−12 ) = (𝑛𝑛𝑞𝑞𝑝𝑝−12 + 𝑘𝑘𝑝𝑝−12 , 2𝑘𝑘𝑝𝑝−1𝑞𝑞𝑝𝑝−1) (47) 

has positive entries and then Equation (43) follows. 

On the other hand, if 𝑝𝑝 is even, it follows from Theorem 5.2 and Remark 2.2 that 

 
(
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 + 𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 − 𝑘𝑘𝑝𝑝

2−1
2 ) = (±𝑘𝑘𝑝𝑝−1,±𝑞𝑞𝑝𝑝−1), (48) 

where the signal depends on 𝑝𝑝2. If 𝑝𝑝2 is odd, then 𝑝𝑝2 − 1 is even and then Lemma 4.1 guarantees 

that the point (
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 +𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 −𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 −𝑘𝑘𝑝𝑝

2−1
2 ) lies in the first quadrant. Therefore, Equation (44) 

follows. If 𝑝𝑝2 is even, then 𝑝𝑝2 − 1 is odd and then the point (
𝑛𝑛𝑞𝑞𝑝𝑝

2−1
2 +𝑘𝑘𝑝𝑝

2−1
2

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 −𝑘𝑘𝑝𝑝

2−1
2 ,

2𝑘𝑘𝑝𝑝
2−1

𝑞𝑞𝑝𝑝
2−1

𝑛𝑛𝑞𝑞𝑝𝑝
2−1
2 −𝑘𝑘𝑝𝑝

2−1
2 ) lies in the third 

quadrant; hence, Equation (45) follows. ∎ 
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